
Implementing Riak
in Erlang:

Benefits and Challenges
Steve Vinoski
Basho Technologies

Cambridge, MA USA
http://basho.com
@stevevinoski

vinoski@ieee.org
http://steve.vinoski.net/

http://basho.com
http://basho.com
http://steve.vinoski.net
http://steve.vinoski.net

Erlang

•Started in the mid-80′s, Ericsson
Computer Science Laboratories (CSL)

•Joe Armstrong began investigating
languages for programming next-
generation telecom equipment

•Erlang initially implemented in
Prolog, with influence and ideas from
ML, Ada, Smalltalk, other languages

Erlang

•Open sourced in 1998

•Available from http://erlang.org

•Latest release: R15B03 (Nov 2012)

Erlang

http://erlang.org
http://erlang.org

Ericsson CSL Telecom
Switch Requirements

•Large number of concurrent activities

Ericsson CSL Telecom
Switch Requirements

•Large number of concurrent activities

•Large software systems distributed
across multiple computers

Ericsson CSL Telecom
Switch Requirements

•Large number of concurrent activities

•Large software systems distributed
across multiple computers

•Continuous operation for years

Ericsson CSL Telecom
Switch Requirements

•Large number of concurrent activities

•Large software systems distributed
across multiple computers

•Continuous operation for years

•Live updates and maintenance

Ericsson CSL Telecom
Switch Requirements

•Large number of concurrent activities

•Large software systems distributed
across multiple computers

•Continuous operation for years

•Live updates and maintenance

•Tolerance for both hardware and
software faults

Ericsson CSL Telecom
Switch Requirements

•Large number of concurrent activities

•Large software systems distributed
across multiple computers

•Continuous operation for years

•Live updates and maintenance

•Tolerance for both hardware and
software faults

Today’s Data/Web/
Cloud/Service Apps

Concurrency

•Lightweight, much lighter than OS
threads

•Hundreds of thousands or even
millions per Erlang VM instance

Erlang Processes

Concurrency For
Reliability

•Isolation: Erlang processes
communicate only via message
passing

Concurrency For
Reliability

•Isolation: Erlang processes
communicate only via message
passing

•Distribution: Erlang process model
works across nodes

Concurrency For
Reliability

•Isolation: Erlang processes
communicate only via message
passing

•Distribution: Erlang process model
works across nodes

•Monitoring/supervision: allow an
Erlang process to take action when
another fails

Concurrency For
Reliability

N

Erlang Process
Architecture

CPU
Core 1 CPU

Core N

N

Erlang Process
Architecture

OS + kernel threads
CPU

Core 1 CPU
Core N

N

Erlang Process
Architecture

OS + kernel threads
CPU

Core 1 CPU
Core N

SMP
Schedulers Erlang VM1 N

Erlang Process
Architecture

Run Queues

OS + kernel threads
CPU

Core 1 CPU
Core N

SMP
Schedulers Erlang VM1 N

Erlang Process
Architecture

Run QueuesProcess

Process

Process

Process

Process

Process

OS + kernel threads
CPU

Core 1 CPU
Core N

SMP
Schedulers Erlang VM1 N

Erlang Process
Architecture

A Small Language

•Erlang has just a few elements:
numbers, atoms, tuples, lists,
records, binaries, functions, modules

•Variables are single assignment, no
globals

•Flow control via pattern matching,
case, if, try-catch, recursion,
messages

Easy To Learn

•Language size means developers
become proficient quickly

•Code is typically small, easy to read,
easy to understand

•Erlang's Open Telecom Platform
(OTP) frameworks solve recurring
problems across multiple domains

What is Riak?

What is Riak?

What is Riak?

•A distributed

What is Riak?

•A distributed

•highly available

What is Riak?

•A distributed

•highly available

•highly scalable

What is Riak?

•A distributed

•highly available

•highly scalable

•open source

What is Riak?

•A distributed

•highly available

•highly scalable

•open source

•key-value database

What is Riak?

•A distributed

•highly available

•highly scalable

•open source

•key-value database

•written mostly in Erlang.

What is Riak?

•Modeled after Amazon Dynamo

•see Andy Gross's "Dynamo, Five
Years Later" for more details
https://speakerdeck.com/argv0/dynamo-five-years-later

•Also provides MapReduce, secondary
indexes, and full-text search

•Built for operational ease

https://speakerdeck.com/argv0/dynamo-five-years-later
https://speakerdeck.com/argv0/dynamo-five-years-later

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

Erlang parts

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Cluster

node 0

node 1

node 2

node 3

Distributing Data

•Riak uses consistent hashing
to spread data across the
cluster

•Minimizes remapping of keys
when number of hash slots
changes

•Spreads data evenly and
minimizes hotspots

node 0

node 1

node 2

node 3

Consistent Hashing
node 0

node 1

node 2

node 3

Consistent Hashing

• Riak uses SHA-1 as a hash function
node 0

node 1

node 2

node 3

Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a
ring

node 0

node 1

node 2

node 3

Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a
ring

• Divides the ring into partitions
called "virtual nodes" or vnodes
(default 64)

node 0

node 1

node 2

node 3

Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a
ring

• Divides the ring into partitions
called "virtual nodes" or vnodes
(default 64)

• Each physical node in the cluster
hosts multiple vnodes

node 0

node 1

node 2

node 3

Hash Ring
2160 0

2160/4

2160/2

3*2160/4

node 0

node 1

node 2

node 3

Hash Ring

node 0

node 1

node 2

node 3

N/R/W Values

for details see http://docs.basho.com/riak/1.2.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

node 0

node 1

node 2

node 3

http://docs.basho.com/riak/1.2.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/
http://docs.basho.com/riak/1.2.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

N/R/W Values

Implementing
Consistent Hashing

•Erlang's crypto module integration
with OpenSSL provides the SHA-1
function

•Hash values are 160 bits

•But Erlang's integers are infinite
precision

•And Erlang binaries store these large
values efficiently

Implementing
Consistent Hashing

Implementing
Consistent Hashing

Implementing
Consistent Hashing

Implementing
Consistent Hashing

Implementing
Consistent Hashing

Riak's Ring

Riak's Ring

Riak's Ring

Riak's Ring

Riak's Ring

Ring State

•All nodes in a Riak cluster are peers,
no masters or slaves

•Nodes exchange their
understanding of ring state via a
gossip protocol

Distributed Erlang

•Erlang has distribution built in

•required for reliability

•By default Erlang nodes form a
mesh, every node knows about
every other node

•Riak uses this for intra-cluster
communication

Distributed Erlang

Distributed Erlang

Distributed Erlang

Distributed Erlang

Distributed Erlang

Distributed Erlang
Mesh

node 0

node 1

node 2

node 3

Distributed Erlang
Mesh

node 0

node 1

node 2

node 3

Distributed Erlang
Mesh

node 0

node 1

node 2

node 3

•Caveat: mesh housekeeping runs into
scaling issues as the cluster grows large

Gossip

•Nodes periodically send their
understanding of the ring state to
other randomly chosen nodes

•Gossip module also provides an API
for sending ring state to specific
nodes

Riak Core

Riak KV

Bitcask eLevelDB Memory Multi

Riak API

Riak Clients

Riak Core

Riak Core

Riak KV

Bitcask eLevelDB Memory Multi

Riak API

Riak Clients

Riak Core

Riak Core

Riak KV

Bitcask eLevelDB Memory Multi

Riak API

Riak Clients

•consistent
 hashing
•vector clocks
•sloppy quorums

•gossip protocols
•virtual nodes
 (vnodes)
•hinted handoff

N/R/W Values

Hinted Handoff

Hinted Handoff

•Fallback vnode holds data for
unavailable actual vnode

Hinted Handoff

•Fallback vnode holds data for
unavailable actual vnode

•Fallback vnode keeps checking for
availability of actual vnode

Hinted Handoff

•Fallback vnode holds data for
unavailable actual vnode

•Fallback vnode keeps checking for
availability of actual vnode

•Once actual vnode becomes available,
fallback hands off data to it

Old Issue with Handoff

• Handoff can require shipping megabytes of
data over the network

• Used to be a hard-coded 128kb limit in the
Erlang VM for its distribution port buffer

• Hitting the limit caused VM to de-schedule
sender until the dist port cleared

• Basho's Scott Fritchie submitted an Erlang
patch that allows the dist port buffer size
to be configured (Erlang version R14B01)

Read Repair

•If a read detects a vnode with stale
data, it is repaired via asynchronous
update

•Helps implement eventual
consistency

•Next version of Riak also supports
active anti-entropy (AAE) to actively
repair stale values

Core Protocols

•Gossip, handoff, read repair, etc. all
require intra-cluster protocols

•Erlang features help significantly
with protocol implementations

Binary Handling

•Erlang's binaries make working with
network packets easy

•For example, deconstructing a TCP
message (from Cesarini &
Thompson “Erlang Programming”)

Binary Handling

<<SourcePort:16, DestinationPort:16,
 SequenceNumber:32, AckNumber:32,
 DataOffset:4, _Rsrvd:4, Flags:8,
 WindowSize:16, Checksum:16,
 UrgentPtr:16,
 Data/binary>> = TcpBuf.

Binary Handling

<<SourcePort:16, DestinationPort:16,
 SequenceNumber:32, AckNumber:32,
 DataOffset:4, _Rsrvd:4, Flags:8,
 WindowSize:16, Checksum:16,
 UrgentPtr:16,
 Data/binary>> = TcpBuf.

Binary Handling

<<SourcePort:16, DestinationPort:16,
 SequenceNumber:32, AckNumber:32,
 DataOffset:4, _Rsrvd:4, Flags:8,
 WindowSize:16, Checksum:16,
 UrgentPtr:16,
 Data/binary>> = TcpBuf.

•OTP provides libraries of standard
modules

•And also behaviours:
implementations of common
patterns for concurrent, distributed,
fault-tolerant Erlang apps

Protocols with OTP

OTP Behaviour
Modules

•A behaviour is similar to an abstract
base class in OO terms, providing:

•a message handling loop

•integration with underlying OTP
system (for code upgrade, tracing,
process management, etc.)

58

OTP Behaviors

•application

•supervisor

•gen_server

•gen_fsm

•gen_event

gen_server

•Generic server behaviour for handling
messages

•Supports server-like components,
distributed or not

• “Business logic” lives in app-specific
callback module

•Maintains state in a tail-call optimized
receive loop

60

gen_fsm

•Behaviour supporting finite state
machines (FSMs)

•Same tail-call loop for maintaining
state as gen_server

•States and events handled by app-
specific callback module

•Allows events to be sent into an FSM
either sync or async

61

Riak and gen_*

•Riak makes heavy use of these
behaviours, e.g.:

•FSMs for get and put operations

•Vnode FSM

•Gossip module is a gen_server

62

Behaviour Benefits

•Standardized frameworks providing
common patterns, common
vocabulary

•Used by pretty much all non-trivial
Erlang systems

•Erlang developers understand them,
know how to read them

63

Behaviour Benefits
•Separate a lot of messaging,

debugging, tracing support, system
concerns from business logic

64

OTP
gen_*

module

App
callback
module

incoming
messages

outgoing
messages

callback

replies

application Behaviour

•Provides an entry point for an OTP-
compliant app

•Allows multiple Erlang components to
be combined into a system

•Erlang apps can declare their
dependencies on other apps

•A running Riak system comprises
about 30 applications

65

App Startup Sequence

•Hierarchical sequence

•Erlang system application controller
starts the app

•App starts supervisor(s)

•Each supervisor starts workers

•Workers are typically instances of
OTP behaviors

66

Workers & Supervisors

• Workers implement application logic

• Supervisors:

• start child workers and sub-
supervisors

• link to the children and trap child
process exits

• take action when a child dies, typically
restarting one or more children

67

Let It Crash

•In his doctoral thesis, Joe Armstrong,
creator of Erlang, wrote:

• Let some other process do the error recovery.

• If you can’t do what you want to do, die.

• Let it crash.

• Do not program defensively.

68

see http://www.erlang.org/download/armstrong_thesis_2003.pdf

http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf

Application, Supervisors,
Workers

Simple
Core

69

Application, Supervisors,
Workers

Application
Simple
Core

69

Application, Supervisors,
Workers

Application

Supervisors

Simple
Core

69

Application, Supervisors,
Workers

Application

Workers

Supervisors

Simple
Core

69

OTP System Facilities

70

OTP System Facilities

70

•Status

OTP System Facilities

70

•Status

•Process info

OTP System Facilities

70

•Status

•Process info

•Tracing

OTP System Facilities

70

•Status

•Process info

•Tracing

•The above work with OTP-compliant
behaviours, very useful for debug

OTP System Facilities

70

•Status

•Process info

•Tracing

•The above work with OTP-compliant
behaviours, very useful for debug

•Releases

OTP System Facilities

70

•Status

•Process info

•Tracing

•The above work with OTP-compliant
behaviours, very useful for debug

•Releases

•Live upgrades

Integration

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

Riak Architecture

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

Riak Architecture

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang on top

C/C++ on the bottom

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Linking with C/C++

•Erlang provides the ability to
dynamically link C/C++ libraries into
the VM

•One way is through the driver interface

• for example the VM supplies network
and file system facilities via drivers

•Another way is through Native
Implemented Functions (NIFs)

Native Implemented
Functions (NIFs)

•Lets C/C++ functions operate as
Erlang functions

•Erlang module serves as entry point

•When module loads it dynamically
loads its NIF shared library,
overlaying its Erlang functions with
C/C++ replacements

Example: eleveldb

•NIF wrapper around Google's
LevelDB C++ database

•Erlang interface plugs in underneath
Riak KV

Example: eleveldb

Example: eleveldb

Example: eleveldb

NIF Features

•Easy to convert arguments and
return values between C/C++ and
Erlang

•Ref count binaries to avoid data
copying where needed

•Portable interface to OS
multithreading capabilities (threads,
mutexes, cond vars, etc.)

NIF Caveats

NIF Caveats

•Crashes in your linked-in C/C++
kill the whole VM

NIF Caveats

•Crashes in your linked-in C/C++
kill the whole VM

•Lesson: use NIFs and drivers only
when needed, and don't write
crappy code

NIF Caveats

NIF Caveats

•NIF calls execute within a VM
scheduler thread

NIF Caveats

•NIF calls execute within a VM
scheduler thread

•If the NIF blocks, the scheduler
thread blocks

NIF Caveats

•NIF calls execute within a VM
scheduler thread

•If the NIF blocks, the scheduler
thread blocks

•THIS IS VERY BAD

NIF Caveats

•NIF calls execute within a VM
scheduler thread

•If the NIF blocks, the scheduler
thread blocks

•THIS IS VERY BAD

•NIFs should block for no more than
1 millisecond

NIF Caveats

NIF Caveats
• Basho found "scheduler anomalies" where

NIF Caveats
• Basho found "scheduler anomalies" where

• the VM would put most of its schedulers
to sleep, by design, under low load

NIF Caveats
• Basho found "scheduler anomalies" where

• the VM would put most of its schedulers
to sleep, by design, under low load

• but would fail to wake them up as load
increased

NIF Caveats
• Basho found "scheduler anomalies" where

• the VM would put most of its schedulers
to sleep, by design, under low load

• but would fail to wake them up as load
increased

• Believe it's caused by NIF calls that were
taking multiple seconds in some cases

NIF Caveats
• Basho found "scheduler anomalies" where

• the VM would put most of its schedulers
to sleep, by design, under low load

• but would fail to wake them up as load
increased

• Believe it's caused by NIF calls that were
taking multiple seconds in some cases

• Lesson: put long-running activities in their
own threads

Testing

Eunit

• Erlang's unit testing facility

• Support for asserting test results,
grouping tests, setup and teardown, etc.

• Unit tests typically live in the same
module as the code they test, but are
conditionally compiled in only for testing

• Used heavily in Riak

QuickCheck

•Property-based testing product
from Quviq

•John Hughes will be giving a talk
about this later today, you should
definitely attend

QuickCheck

• Create a model of the software under test

• QuickCheck runs randomly-generated
tests against it

• When it finds a failure, QuickCheck
automatically shrinks the testcase to a
minimum for easier debugging

• Used quite heavily in Riak, especially to
test various protocols and interactions

Build and Release

Application Directories

•Erlang applications tend to use a
standard directory layout

•Certain tools expect to find this
layout

Rebar

•A tool created by Dave "Dizzy"
Smith (formerly of Basho) to
manage Erlang apps

•Manages dependencies, builds, runs
tests, generates releases

•Now the de facto app build and
release tool

Miscellaneous

Miscellaneous

•Memory

•Erlang shell

•Hot code loading

•Logging

•VM knowledge

•Hiring

Memory

•Process message queues have no
limits, can cause out-of-memory
conditions if a process can't keep
up

•VM dies by design if it runs out of
memory

•Riak runs a memory monitor to help
log out-of-memory conditions

Erlang Shell

•Hard to imagine working without it

•Huge help during development and
debug

Hot Code Loading

•It really works

•Use it all the time during
development

•We've also used it to load repaired
code into live production systems
for customers

Logging

• Non-Erlang folks have a hard time reading
Erlang logs

• Andrew Thompson of Basho wrote Lager to help
address this

• Lager translates Erlang logging into something
regular people can deal with

• also logs original Erlang to keep all the details

• But does more than that, see
https://github.com/basho/lager for details

https://github.com/basho/lager
https://github.com/basho/lager

VM Knowledge

•Running high-scale high-load
systems like Riak requires
knowledge of VM internals

•No different than working with the
JVM or other language runtimes

Hiring

•Erlang is easy to learn

•Not really a problem to hire Erlang
programmers

•Basho hires great developers, those
who need to learn Erlang just do it

•BTW we're hiring, see
http://bashojobs.theresumator.com

http://bashojobs.theresumator.com
http://bashojobs.theresumator.com

Summary

•Erlang/OTP is an amazing system
for developing distributed systems
like Riak

•It's very much a DSL for distributed
concurrent systems

•It does what it says on the tin

Summary

•Erlang code is relatively small, easy
to read, write, and maintain

•Tools support the entire software
lifecycle

•Erlang community is friendly and
fantastic

For More Erlang Info

Also: http://learnyousomeerlang.com/

101

http://learnyousomeerlang.com
http://learnyousomeerlang.com

For More Riak Info

•"A Little Riak Book" by Basho's Eric
Redmond
https://github.com/coderoshi/little_riak_book/

•Mathias Meyer's "Riak Handbook"
http://riakhandbook.com

•Eric Redmond's "Seven Databases in Seven
Weeks"
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/
http://riakhandbook.com
http://riakhandbook.com
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

For More Riak Info

•Basho documentation
http://docs.basho.com

•Basho blog
http://basho.com/blog/

•Basho's github repositories
https://github.com/basho
https://github.com/basho-labs

http://basho.com
http://basho.com
http://basho.com/blog/
http://basho.com/blog/
https://github.com/basho
https://github.com/basho
https://github.com/basho-labs
https://github.com/basho-labs

Thanks

