©
basho
Implementing Riak

in Erlang:
Benefits and Challenges

Steve Vinoski

Basho Technologies
Cambridge, MA USA
http://basho.com
@stevevinoski
vinoski@ieee.org

http://steve.vinoski.net/

http://basho.com
http://basho.com
http://steve.vinoski.net
http://steve.vinoski.net

Erlang

Erlang

@ Started in the mid-80’s, Ericsson
Computer Science Laboratories (CSL)

@ Joe Armstrong began investigating
languages for programming next-
generation telecom equipment

@ Erlang initially implemented in
Prolog, with influence and ideas from
ML, Ada, Smalltalk, other languages

basho

Erlang

® Open sourced in 1998
@ Available from http://erlang.org
® Latest release: R15B03 (Nov 2012)

basho

http://erlang.org
http://erlang.org

Ericsson CSL Telecom
Switch Requirements

Ericsson CSL Telecom
Switch Requirements

@ Large number of concurrent activities

basho

Ericsson CSL Telecom
Switch Requirements

@ Large number of concurrent activities

® Large software systems distributed
across multiple computers

basho

Ericsson CSL Telecom
Switch Requirements

@ Large number of concurrent activities

® Large software systems distributed
across multiple computers

@ Continuous operation for years

basho

Ericsson CSL Telecom
Switch Requirements

@ Large number of concurrent activities

® Large software systems distributed
across multiple computers

@ Continuous operation for years

@ Live updates and maintenance

basho

Ericsson CSL Telecom
Switch Requirements

@ Large number of concurrent activities

® Large software systems distributed
across multiple computers

@ Continuous operation for years
@ Live updates and maintenance

® Tolerance for both hardware and
software faults

&

basho

Today’s Data/VVeb/
Cloud/Service Apps

@ Large number of concurrent activities

® Large software systems distributed
across multiple computers

@ Continuous operation for years
@ Live updates and maintenance

® Tolerance for both hardware and
software faults

&

basho

Concurrency

basho

Erlang Processes

® Lightweight, much lighter than OS
threads

@ Hundreds of thousands or even
millions per Erlang VM instance

basho

Concurrency For
Reliability

Concurrency For
Reliability

@ Isolation: Erlang processes
communicate only via message
passing

basho

Concurrency For
Reliability

@ Isolation: Erlang processes
communicate only via message
passing

@ Distribution: Erlang process model
works across nodes

basho

Concurrency For
Reliability

@ Isolation: Erlang processes
communicate only via message
passing

@ Distribution: Erlang process model
works across nodes

® Monitoring/supervision: allow an
Erlang process to take action when
another fails

&

basho

Erlang Process
Architecture

basho

Erlang Process

Architecture
CPU CPU
Corel | """ Core N

basho

Erlang Process
Architecture

OS + kernel threads

CPU CPU
Corel | *~°°°°° Core N

basho

Erlang Process
Architecture

SMP
Schedulers Erlang VM

OS + kernel threads

CPU CPU
Core I Core N

basho

Erlang Process
Architecture

Run Queues

N\

SMP
OS + kernel threads
CPU CPU
Core I Core N

basho

Erlang Process
Architecture

Process Run Queues @
Process \‘ @
/
7

\ =
Process SMP o

OS + kernel threads
CPU CPU
Core I Core N

basho

A Small Language

@ Erlang has just a few elements:
numbers, atoms, tuples, lists,
records, binaries, functions, modules

@ Variables are single assignment, no
globals

@ Flow control via pattern matching,
case, if, try-catch, recursion,
messages

basho

Easy lo Learn

® Language size means developers
become proficient quickly

® Code is typically small, easy to read,
easy to understand

@ Erlang's Open Telecom Platform
(OTP) frameworks solve recurring
problems across multiple domains

&

basho

What is Riak?

What is Riak?

What is Riak?

® A distributed

basho

What is Riak?

® A distributed
@ highly available

basho

What is Riak?

® A distributed
@ highly available
@ highly scalable

basho

What is Riak?

® A distributed
@ highly available
@ highly scalable

® open source

basho

What is Riak?

® A distributed
@ highly available
@ highly scalable
@ open source

® key-value database

basho

What is Riak?

® A distributed

@ highly available

@ highly scalable

@ open source

® key-value database

® written mostly in Erlang.

basho

What is Riak?

® Modeled after Amazon Dynamo

® see Andy Gross's 'Dynamo, Five
Years Later” for more details

https://speakerdeck.com/argv0/dynamo-five-years-later

® Also provides MapReduce, secondary
indexes, and full-text search

® Built for operational ease

basho

https://speakerdeck.com/argv0/dynamo-five-years-later
https://speakerdeck.com/argv0/dynamo-five-years-later

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .

r image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak book/

basho

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients)

___________________________________ ’
emm==ee—e——ee—seoe——e——e——ee o

' |

l[Webmachine HTTP] [Riak PB]:

: '

| |

{ Riak API |

r image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak book/

basho

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients)
\ ___________________________________ 4
(f========-===-==-=----====—==--=--=-== o
' |
l[Webmachine HTTP] [Riak PB]:
: '
| |
{ Riak API ;
N N }
:[Riak KV] [Riak Pipe J [Yokozuna J:
: '
| |
! Riak Core '

r image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak book/

basho

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients)
\ ___________________________________ 4
(f========-===-==-=----====—==--=--=-== o
' |
l[Webmachine HTTP] [Riak PB]:
: '
| |
{ Riak API ;
N N }
:[Riak KV] [Riak Pipe J [Yokozuna J:
: '
| |
{ Riak Core '
[Bltcask] [eLeveIDB] [Memory] [Multi]
L Erlang)

r image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak book/

basho

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

p

basho

Riak Architecture

:l Erlang l[Ruby][Python][PHP][Nodejs]

(Java](C/C++](.NET][Go][More]

Riak Clients .
___________________________________ 4
--------------------------------- <)

f }
: Webmachine HTTP Rlak PB :
: I
i |
: Riak API |
NN :
: Riak KV Rlak Plpe Yokozuna :
: I
i |
{ Riak Core '
| Bitcask l'eLeveIDB l' Memory l' Multi l
L Erlang)

Erlang parts

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak book/

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Cluster

el

B

basho

Distributing Data

e Riak uses consistent hashing .
to spread data across the S
cluster node 2

® Minimizes remapping of keys ' aeu: =
when number of hash slots
changes

@ Spreads data evenly and
minimizes hotspots

&

basho

Consistent Hashing

basho

Y . n n

basho

Consistent Hashing

® Riak uses SHA-1 as a hash function

@ Treats its 160-bit value space as a
ring

basho

Consistent Hashing

® Riak uses SHA-1 as a hash function

® Treats its 160-bit value space as a
ring
e Divides the ring into partitions node 3

called "virtual nodes" or vnhodes
(default 64)

&

basho

Consistent Hashing

® Riak uses SHA-1 as a hash function

® Treats its 160-bit value space as a
ring
e Divides the ring into partitions node 3

called "virtual nodes" or vnhodes
(default 64)

® Each physical node in the cluster
hosts multiple vhodes

&

basho

Hash Ring

|60
node
\ ode 2
hode 3
i 2|60/4
\\ 60/

3*2|60/4 1

basho

Hash Ring

160

21600
) \ e single vnode/partition

/ node 0
a ring with 32 partitions \"‘2'60/4
\ BRERES RS node 2
/ hode 3

AN

\ /
2'610/2

K

basho

hash(<<"artist">>,<<"REM">>)

N/R/WV Values

put(<<"artist">>,<<"REM">>)

(N=3)

N

a
)
(@
0O
1)
Jo

for details see http://docs.basho.com/riak/1.2.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

0

basho

http://docs.basho.com/riak/1.2.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/
http://docs.basho.com/riak/1.2.1/tutorials/fast-track/Tunable-CAP-Controls-in-Riak/

N/R/WV Values

get/put(artist”, "REM’,
R/W=2)

K*{ok, Object}

Implementing
Consistent Hashing

® Erlang's crypto module integration
with OpenSSL provides the SHA-1
function

® Hash values are 160 bits

e@ But Erlang's integers are infinite
precision

® And Erlang binaries store these large
values efficiently

&

basho

Implementing
Consistent Hashing

1> HashBin = crypto:sha("my object key").
<<189,73,125,145,132,154,3,75,50,12,195,156,7,170,128,!
157,242,158,159>>

basho

Implementing
Consistent Hashing

2> byte_size(HashB1in).
20

basho

Implementing
Consistent Hashing

3> <<HashInt:160/1integer>> = HashBin.
2<189.73.125,145,132.,154,3,75,50,12,195,156, 7,170,128 ..
157,242,158,159>>

0

basho

Implementing
Consistent Hashing

4> Hashlnt.
1080638148638140855100958270058021626367330918047

0

basho

Implementing
Consistent Hashing

1> HashBin = crypto:sha("my object key").
<<189,73,125,145,132,154,3,75,50,12,195,156,7,170,128,"
157,242,158,159>>

2> byte_size(HashB1in).

20

3> <<HashInt:160/integer>> = HashBin.
<<x189,73,125,145,132,154,3,75,50,12,195,156,7,170,128,!
157,242,158,159>>

4> Hashlnt.
1080638148638140855100958270058021626367330918047

0

basho

Riak's Ring

5> rp(riak_core_ring_manager:get_my_ring()).

Riak's Ring

{ok,{chstate_vZ2, 'dev1@127.0.0.1",

Riak's Ring

[{'dev1@127.0.0.1",{211,63521635595}},
{'dev2@127.0.0.1",{3,63521635521}},
{'dev3@127.0.0.1",{3,63521635544}}],

Riak's Ring

{64,
[{0, 'dev1@127.0.0.1'},
{22835963083295358096932575511191922
123945984,
'dev2@127.0.0.1'},
{45671926166590716193865151022383844
247891968,

0

basho

. | .
Riak's Ring
5> rp(riak_core_ring_manager:get_my_ring()).
{ok, {chstate_vZ2, 'dev1@127.0.0.1",
[{'dev1@127.0.0.1",{211,63521635595}},
{'dev2@127.0.0.1",{3,63521635521}},
{'dev3@127.0.0.1",{3,63521635544}}],
{64,
[{0, 'dev1@127.0.0.1"},
{22835963083295358096932575511191922
123945984,
'dev2@127.0.0.1"},

145671926166590716193865151022383844
247891968,

©

basho

Ring State

® All nodes in a Riak cluster are peers,
no masters or slaves

® Nodes exchange their
understanding of ring state via a
gossip protocol

basho

Distributed Erlang

@ Erlang has distribution built in
e required for reliability

e By default Erlang nodes form a
mesh, every node knows about
every other node

® Riak uses this for intra-cluster
communication

&

basho

Distributed Erlang

$ erl -name dev4@127.0.0.1 -setcookie riak
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:8:8]
[async-threads:0] [kernel-poll:false]

Eshell V5.9.1 (abort with AG)

basho

Distributed Erlang

(dev4@127.0.0.1)1> nodes().
n

basho

Distributed Erlang

(dev4@127.0.0.1)2> net_adm:ping('dev1@127.0.0.1").
pong

basho

Distributed Erlang

(dev4@127.0.0.1)3> nodes().
['dev1@127.0.0.1", 'dev3@127.0.0.1", 'dev2@127.0.0.1"]

&

basho

Distributed Erlang

$ erl -name dev4@127.0.0.1 -setcookie riak
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:8:8]
[async-threads:0] [kernel-poll:false]

Eshell V5.9.1 (abort with AG)
(dev4@127.0.0.1)1> nodes().

[]
(dev4@127.0.0.1)2> net_adm:ping('dev1@127.0.0.1").

pong
(dev4@127.0.0.1)3> nodes().
['dev1@127.0.0.1", 'dev3@127.0.0.1", 'dev2@127.0.0.1"]

0

basho

Distributed Erlang
Mesh

. -~
[1OUC L

basho

Distributed Erlang
Mesh

A ™ ™ R

basho

Distributed Erlang
Mesh

\\\\\

e Caveat: mesh housekeeping runs into
scaling issues as the cluster grows large

0

basho

Gossip

® Nodes periodically send their
understanding of the ring state to
other randomly chosen nodes

® Gossip module also provides an API
for sending ring state to specific
nodes

basho

Riak Core

--

:‘ Riak CIients'E

] Riak API

4 N
Riak KV

_)

4)
Bitcask] [eLeveIDB] [Memory] [Multi
\ J

basho

Riak Core

Riak Core

basho

Riak Core

*consistent . N\ ®gossip protocols
hashin : evirtual nodes
5 Riak Core
evector clocks (vhodes)
*sloppy quorums ™ “ ehinted handoff

0

basho

N/R/WV Values

get/put(artist”, "REM’,
R/W=2)

K*{ok, Object}

Hinted Handoff

Hinted Handoff

® Fallback vhode holds data for
unavailable actual vnode

basho

Hinted Handoff

® Fallback vhode holds data for
unavailable actual vnode

@ Fallback vnode keeps checking for
availability of actual vnhode

basho

Hinted Handoff

® Fallback vhode holds data for
unavailable actual vnode

@ Fallback vnode keeps checking for
availability of actual vnhode

® Once actual vnode becomes available,
fallback hands off data to it

&

basho

Old Issue with Handoff

e Handoff can require shipping megabytes of
data over the network

@ Used to be a hard-coded 128kb limit in the
Erlang VM for its distribution port buffer

e Hitting the limit caused VM to de-schedule
sender until the dist port cleared

® Basho's Scott Fritchie submitted an Erlang
patch that allows the dist port buffer size
to be configured (Erlang version R14B01)

&

basho

Read Repair

o If a read detects a vnode with stale
data, it is repaired via asynchronous
update

@ Helps implement eventual
consistency

® Next version of Riak also supports
active anti-entropy (AAE) to actively
repair stale values

&

basho

Core Protocols

® Gossip, handoff, read repair, etc. all
require intra-cluster protocols

® Erlang features help significantly
with protocol implementations

basho

Binary Handling

® Erlang’'s binaries make working with
network packets easy

® For example, deconstructing a TCP
message (from Cesarini &
Thompson “Erlang Programming”)

basho

Binary Handling

TcpBuf.

basho

Binary Handling

<<SourcePort:16, DestinationPort:16,
SequenceNumber:32, AckNumber:32,
DataOffset:4, _Rsrvd:4, Flags:8,
WindowSi1ze:16, Checksum:16,
UrgentPtr:16,
Data/binary>> = TcpBuf.

0

basho

Binary Handling

<<SourcePort:16, DestinationPort:16,
SequenceNumber:32, AckNumber:32,
DataOffset:4, _Rsrvd:4, Flags:8,
WindowSi1ze:16, Checksum:16,
UrgentPtr:16,
Data/binary>> = TcpBuf.

0

basho

Protocols with OTP

® OTP provides libraries of standard
modules

® And also behaviours:
implementations of common
patterns for concurrent, distributed,
fault-tolerant Erlang apps

basho

OTP Behaviour
Modules

® A behaviour is similar to an abstract
base class in OO terms, providing:

® a2 message handling loop

@ integration with underlying OTP
system (for code upgrade, tracing,
process management, etc.)

basho 28

OTP Behaviors

@ application
@ supervisor
® gen_server
® gen_fsm

® gen_event

basho

gen_server

@ Generic server behaviour for handling
messages

® Supports server-like components,
distributed or not

® ‘Business logic” lives in app-specific
callback module

® Maintains state in a tail-call optimized
receive loop

0O

basho 60

gen_fsm

® Behaviour supporting finite state
machines (FSMs)

@ Same tail-call loop for maintaining
state as gen_server

@ States and events handled by app-
specific callback module

® Allows events to be sent into an FSM
either sync or async

©
basho o

Riak and gen *

® Riak makes heavy use of these
behaviours, e.q.:

@ FSMs for get and put operations
® Vnode FSM

® Gossip module is a gen_server

basho 62

Behaviour Benefits

e Standardized frameworks providing
common patterns, common
vocabulary

® Used by pretty much all non-trivial
Erlang systems

@ Erlang developers understand them,
know how to read them

basho 63

Behaviour Benefits

@ Separate a lot of messaging,
debugging, tracing support, system
concerns from business logic

Incoming
messages

<

outgoing
messages

&

basho

OTP
gen *
module

callback

<

>

64

replies

App
callback

module

application Behaviour

@ Provides an entry point for an OTP-
compliant app

® Allows multiple Erlang components to
be combined into a system

® Erlang apps can declare their
dependencies on other apps

® A running Riak system comprises
about 30 applications

©
basho e

App Startup Sequence

@ Hierarchical sequence

® Erlang system application controller
starts the app

® App starts supervisor(s)
® Each supervisor starts workers

® Workers are typically instances of
OTP behaviors

r@ 66
basho

Workers & Supervisors

® Workers implement application logic
® Supervisors:

@ start child workers and sub-
supervisors

@ link to the children and trap child
process exits

@ take action when a child dies, typically
restarting one or more children

©
basho 67

Let It Crash

® In his doctoral thesis, Joe Armstrong,
creator of Erlang, wrote:

e [et some other process do the error recovery.
e |[f you can't do what you want to do, die.
e [etitcrash.

e Do not program defensively.

see http://www.erlang.org/download/armstrong_thesis 2003.pdf

&

basho 68

http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf

Application, Supervisors,
Workers

Simple
Core

basho &

Application, Supervisors,
Workers

Application <>
Simple

Core

basho &

Application, Supervisors,
Workers

Application

Supervisors

basho e

Application, Supervisors,
Workers

Application

Supervisors

. Workers

basho

OTP System Facilities

OTP System Facilities

@ Status

OTP System Facilities

@ Status

® Process info

basho 70

OTP System Facilities

@ Status

® Process info

® [racing

basho 70

OTP System Facilities

@ Status
® Process info
® lracing

® The above work with OTP-compliant
behaviours, very useful for debug

basho 4

OTP System Facilities

@ Status
® Process info
® lracing

® The above work with OTP-compliant
behaviours, very useful for debug

® Releases

basho 4

OTP System Facilities

@ Status
® Process info
® lracing

® The above work with OTP-compliant
behaviours, very useful for debug

® Releases

@ Live upgrades

basho 4

Integration

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients)
\ ___________________________________ 4
(f========-===-==-=----====—==--=--=-== o
' |
l[Webmachine HTTP] [Riak PB]:
: '
| |
{ Riak API ;
N N }
:[Riak KV] [Riak Pipe J [Yokozuna J:
: '
| |
{ Riak Core '
[Bltcask] [eLeveIDB] [Memory] [Multi]
L Erlang)

r image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak book/

basho

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Bitcask] [eLeve.DB] [Memoryj [wutt]

Erlang)

.

r image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak book/

basho

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

Erlang on top

[B.tcask] [eLeve.DB] [Memoryj [wutt]

Erlang)

C/C++ on the bottom

r image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak book/

basho

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Linking with C/C++

@ Erlang provides the ability to
dynamically link C/C++ libraries into
the VM

® One way is through the driver interface

e® for example the VM supplies network
and file system facilities via drivers

® Another way is through Native
Implemented Functions (NIFs)

O

basho

Native Implemented
Functions (NIFs)

® Lets C/C++ functions operate as
Erlang functions

® Erlang module serves as entry point

® When module loads it dynamically
loads its NIF shared library,
overlaying its Erlang functions with
C/C++ replacements

&

basho

Example: eleveldb

® NIF wrapper around Google's
LevelDB C++ database

® Erlang interface plugs in underneath
Riak KV

basho

Example: eleveldb

%% Erlang
open(Name, Opts) ->
erlang:nif_error({error, not_loaded}).

Example: eleveldb

// C++
ERL_NIF_TERM

eleveldb_open(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[])
{

Example: eleveldb

// C++
ERL_NIF_TERM

eleveldb_open(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[])
{

char name[4096] ;
1f (enif_get_string(env,argv[@],name,
sizeof name,ERL_NIF_LATIN1) &&
enif_is_list(env, argv[1l]))

basho

NIF Features

@ Easy to convert arguments and
return values between C/C++ and
Erlang

® Ref count binaries to avoid data
copying where needed

® Portable interface to OS
multithreading capabilities (threads,
mutexes, cond vars, etc.)

basho

NIF Caveats

NIF Caveats

® Crashes in your linked-in C/C++
Kill the whole VM

basho

NIF Caveats

® Crashes in your linked-in C/C++
Kill the whole VM

® Lesson: use NIFs and drivers only
when needed, and don't write
crappy code

basho

NIF Caveats

NIF Caveats

® NIF calls execute within a VM
scheduler thread

basho

NIF Caveats

® NIF calls execute within a VM
scheduler thread

@ If the NIF blocks, the scheduler
thread blocks

basho

NIF Caveats

® NIF calls execute within a VM
scheduler thread

@ If the NIF blocks, the scheduler
thread blocks

e THIS IS VERY BAD

basho

NIF Caveats

® NIF calls execute within a VM
scheduler thread

@ If the NIF blocks, the scheduler
thread blocks

e THIS IS VERY BAD

® NIFs should block for no more than
1 millisecond

O

basho

NIF Caveats

NIF Caveats

® Basho found "scheduler anomalies" where

basho

NIF Caveats

® Basho found "scheduler anomalies" where

e the VM would put most of its schedulers
to sleep, by design, under low load

basho

NIF Caveats

® Basho found "scheduler anomalies" where

e the VM would put most of its schedulers
to sleep, by design, under low load

@ but would fail to wake them up as load
increased

basho

basho

NIF Caveats

® Basho found "scheduler anomalies" where

e the VM would put most of its schedulers
to sleep, by design, under low load

@ but would fail to wake them up as load
increased

@ Believe it's caused by NIF calls that were
taking multiple seconds in some cases

basho

NIF Caveats

® Basho found "scheduler anomalies" where

e the VM would put most of its schedulers
to sleep, by design, under low load

@ but would fail to wake them up as load
increased

@ Believe it's caused by NIF calls that were
taking multiple seconds in some cases

® Lesson: put long-running activities in their
owhn threads

basho

Testing

basho

Eunit

® Erlang's unit testing facility

@ Support for asserting test results,
grouping tests, setup and teardown, etc.

@ Unit tests typically live in the same
module as the code they test, but are
conditionally compiled in only for testing

® Used heavily in Riak

QuickCheck

® Property-based testing product
from Quvig

® John Hughes will be giving a talk
about this later today, you should
definitely attend

basho

QuickCheck

® Create a model of the software under test

® QuickCheck runs randomly-generated
tests against it

® When it finds a failure, QuickCheck
automatically shrinks the testcase to a
minimum for easier debugging

® Used quite heavily in Riak, especially to
test various protocols and interactions

&

basho

Build and Release

Application Directories

@ Erlang applications tend to use a
standard directory layout

@ Certain tools expect to find this

layout
$ 1s
Makefile C_Src priv rebar.config
test ebin rebar Src
O

basho

Rebar

® A tool created by Dave "Dizzy"
Smith (formerly of Basho) to
manage Erlang apps

® Manages dependencies, builds, runs
tests, generates releases

® Now the de facto app build and
release tool

basho

Miscellaneous

basho

Miscellaneous

® Memory

e Erlang shell

@ Hot code loading
® Logging

e VM knowledge

® Hiring

basho

Memory

® Process message queues have no
limits, can cause out-of-memory
conditions if a process can't keep

up

® VM dies by design if it runs out of
memory

® Riak runs a memory monitor to help
log out-of-memory conditions

basho

Erlang Shell

@ Hard to imagine working without it

@ Huge help during development and
debug

basho

Hot Code Loading

e It really works

e Use it all the time during
development

® We've also used it to load repaired
code into live production systems
for customers

basho

Logging

® Non-Erlang folks have a hard time reading
Erlang logs

® Andrew Thompson of Basho wrote Lager to help
address this

@ lLager translates Erlang logging into something
regular people can deal with

@ also logs original Erlang to keep all the details

® But does more than that, see
https://aithub.com/basho/lager for details

©

basho

https://github.com/basho/lager
https://github.com/basho/lager

VM Knowledge

® Running high-scale high-load
systems like Riak requires
knowledge of VM internals

® No different than working with the
JVM or other language runtimes

basho

Hiring

® Erlang is easy to learn

® Not really a problem to hire Erlang
programmers

® Basho hires great developers, those
who need to learn Erlang just do it

@ BTW we're hiring, see
http://bashojobs.theresumator.com

&

basho

http://bashojobs.theresumator.com
http://bashojobs.theresumator.com

Summary

@ Erlang/OTP is an amazing system
for developing distributed systems
like Riak

@ It's very much a DSL for distributed
concurrent systems

e It does what it says on the tin

&

basho

Summary

@ Erlang code is relatively small, easy
to read, write, and maintain

® Tools support the entire software
lifecycle

® Erlang community is friendly and
fantastic

basho

For More Erlang Info

Programming

Erlang .o

Also: http://learnyousomeerlang.com/

el e

basho 101

http://learnyousomeerlang.com
http://learnyousomeerlang.com

For More Riak Info

@ A Little Riak Book" by Basho's Eric

Redmond
https://agithub.com/coderoshi/little_riak_book/

® Mathias Meyer's "Riak Handbook"
http://riakhandbook.com

® Eric Redmond's "Seven Databases in Seven
Weeks"

http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

&

basho

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/
http://riakhandbook.com
http://riakhandbook.com
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

For More Riak Info

® Basho documentation
http://docs.basho.com

®@ Basho blog
http://basho.com/blog/

® Basho's github repositories
https://github.com/basho
https://github.com/basho-labs

basho

http://basho.com
http://basho.com
http://basho.com/blog/
http://basho.com/blog/
https://github.com/basho
https://github.com/basho
https://github.com/basho-labs
https://github.com/basho-labs

Thanks

basho

