Haskell:

practical as well as cool

John Hughes, Simon Peyton Jones, Philip Wadler

December 2012

What is Haskell?

A functional language
= Purely functional

= Lazy

= Statically typed

Designed 1988-1990
For research, teaching, and practical use

By a committee of academics

N
o)
o)
o
00
N\
O
=

.83 1992

)
=

Haskell

m

N
—
Q
= 1,000,000
S
—-—
g
Q
© 10,000
¥
100

' eren Pogem

Apr 1990 ! 1995 2000 2005 2010
@ & Haskell (the cat)

Haskell

http://redmonk.com Sept 2012

(igldfusion &
orlaf 8jure

W
()]
o
- 4
—
(=)
3t
>
-
=
O
= .
—
@
=

™y
o

Popularity Rank on Stack

factor e
arc_. objective-j
supercollider
viml
oodure data

Popularity Rark on GitHub (by # of Projecfs)

Bhp
C++
objective

Avascri}
bython

Cerl - ruby

W shell
adlee @

grooyx

ol ﬁljure

N
o10)
©
)
(-
o
3=
2
o
o
—
Q
>
O
Y
@)
o
it
P

GitHub, # of projects

Why does Haskell have
such a big mind share?

Keep faith with a few deep, simple
principles, and see where they lead

= Purity
= Domain specific languages

= Types

"People will gladly adapt to the limitations of a great design.”
Don Box

A ny < Spectrum Pure
effect I (no effects)
C, C++, Java, C#, VB Excel, Haskell

X :=Inl

X = X*X
X := X + In2*In2

—ANLD"
=A2+B2

4 4 » ¥ | Sheeti | Sheet2
| E5/[0) [{p200380(=)

Commands, control flow Expressions, data flow

= Do this, then do that = No notion of sequence
= “X" is the name of a cell = “A2” is the name of a
that has different values (single) value

at different times

Pure

Any Spectrum
effect < S—) (no effects)

C, C++, Java, C#. VB Excel, Haskell

= Doe= ¥ hen do that = No notion<s

= “X” is the name of a cell = “A2” is the name of a
that has different values (single) value
at different times

BUT: side effects are useful

m T/O is a side effect. So side effects are
part of the specification of what we want.

Result
Prolonged embarrassment

nads
.~ \onal
rehending A
Comy

. Wadler
P\l.l\l\) \\ {\(\1 \ah% oW

v O
Universit

-+ 11
g certa
Xpress o ns
1aoly €2 L »ms1017

Imperative functional programming

Simon I, Peyton Jones

Philip Wadler

puting Science, University of (]
monpj,wadler}@dcs.glagsow.a

October 1999

Dept of Com

asgow
Email: {si

c.uk

(POPL), Charleston, Jan 1993,

Tors in the published version.

I/0O are constructed by gluing together smaller pro-

grams that do so (Section 2). Combined with higher-

order functions and lazy evaluation. this gives a

Salvation through types

No side

reverse :: [Char] -> [Char] effects

toUpper :: Char -> Char
useless :: () -> () 1/O effects

getChar :: FileHandle -> IO Char
launchMissiles :: IO ()

Pure by default International

side effects

Side effects where necessary

The challenge of effects

Useful Arb1tra1g effects
No effects
H 11
Useless R

Dangerous Safe

The challenge of effects

Cost é@@

Parallelism
Testing
C! 0.5& = Maintenance
Scale and complexity

Time

The challenge of effects

Plan A
(everyone glse)
Useful Arbitrary effects #

Plan B
(Haskell)

Useless @

Dangerous Safe

Domain

specific lang

Goal
The program expresses as
directly as possible what is
the mind of the domain
expert

addDur dgn [b 3, fs 4, g 4, fs 4]

addDur dgn [b 3, es 4, fs 4, es 4]

= addSur dgn [as 3, fs 4, g 4, fs 4]
bassLine = timesM 3 bl :+: timesM 2 b2 :+:

timesM 4 b3 :+: timesM 5 bl

Embedded
domain specific languages

= An EMBEDDED domain-specific
langauge is just a library, whose API
embodies the domain knowledge

m 80% of the benefit for 20% of the
effort

= Haskell is particularly good at this,
because of types, laziness, syntax.

EDSLs in Haskell

Hardware Orchestration (Orc)

description language Reactive animations
(Lava) (Fran)

Workflow Diagrams (disgrams-

cairo)

Fi nancial contracts
Data-parallel (Repa)

Hard real-time

applications (Atom)

URLs, routes,
MongoDB schema,

dﬂ_f‘l_t;;\lie(ﬁgseg;e)s, Parsers (Parsec)

GPUs (Nicola, XML (HaXml)
Accelerate)

Test-case generation
(Quickcheck)

Types are wildly successful

Static typing is by far the most
widely-used program verification

technology in use today: particularly
good cost/benefit ratio

= Lightweight (so programmers use them)

= Machine checked (fully automated, every
compilation)

= Ubiquitous (so programmers can't avoid them)

The joy of types

= [Old hat] Types guarantee the absence of
certain classes of errors: "well typed
programs don't go wrong”
= True +'c
= Seg-faults

= Types are a design language; types are the
UML of Haskell

= The BIGGEST MERIT (though seldom
mentioned) of types is their support for
software maintenance

Bad type systems

Programs that are All programs
well typed

Programs that
work

Region of
Abysmal Pain

Better type systems

Programs that are All programs
well typed

Programs that
work

Smaller Region of Abysmal Pain

Type systems in practical use

Type families, kind
polymorphism etc

GADTs

Type classes

ML polymorphism +
algebraic data types
Simple

types

Haskell

...and Java, C#
generics

Haskell

Scala

2010

Type systems in practical use

Type families, king
polymorphism g

ML polymorphism +
algebraic data types
Simple

types

1970

Transactions 1n

Haskell

The context

A web server
= | ots of independent, I/O-performing threads
m With shared state

GHC's runtime natively supports super-
lightweight threads

But: how to control access to shared state?

Usual answer: locks and condition variables

What’s wrong with locks?

A 10-second review:
- Races: due to forgotten locks
- Deadlock: locks acquired in "wrong" order.

- Lost wakeups: forgotten notify to condition
variable

- Diabolical error recovery: need to restore
invariants and release locks in exception
handlers

- These are serious problems. But even worse...

Locks are absurdly hard to get
right

Scalable double-ended queue: one lock per cell

i1+ g il
S =

No interference if
ends "far enough”

apart

But watch out when the queue
is 0, 1, or 2 elements long!

Locks are absurdly hard to get
right

Difficulty of concurrent

Coding style quelle

Sequential code Undergraduate

Locks are absurdly hard to get

right
Coding style Difficulty of concurrent
queue
Sequential code Undergraduate
LOCkS. ?nd Publishable resulit at
condition . .
i international conference

variables

Atomic memory transactions

Difficulty of concurrent

Coding style queue
Sequential code Undergraduate
LOCkS. ?nd Publishable result at
condition)]
) international conference
variables

Atomic blocks | Undergraduate

Atomic memory transactions

atomically { ... sequential get code ... }

- To a first approximation, just write the
sequential code, and wrap atomically around it

- All-or-nothing semantics: Atomic commit
. Atomic block executes in ISO'OTiOW
- Cannot deadlock (there are no locksl!)

- Atomicity makes error recovery easy
(e.g. exception thrown inside the get code)

Transactional memory

do { atomically (...increment Fred's account
..decrement Bill's account...)
, print receipt
; launch missiles }

Outside atomically Inside atomically

Input/output Yes NO
Deposit or withdraw NO Yes

atomically :: STMa->IOa

TM effects only Arbitrary 1/0 effects

Why does STM fit Haskell so
well?

Efficient: side effects are the exception, not the
rule => efficient

Secure

= type system (without modification) keeps STM
effects separate from I/0 effects

= no possibility of modifying transactional variables
outside transactions

Compositional: a little DSL for describing

transactions atomically ::STMa->IOa

retry » STM a

orElse : STMa->STMa->STM a
throw :: Exception -> STM a

STM Conclusion

= Purity, supported by types, allows us to build
a domain specific language for describing
composable transactions.

Haskell
The world's finest

Imperative programming
language

backup slides
(put at end)

new(szff 3 g -; IO (Rce)f a)
readRef ::Refa->I0a
Mutable state | uriteres :: Refa->a 10 ()

print . Int -> IO ()
main = do { r <- newRef O Reads and
;incR r writes are 100%
; S <- readRef r explicit!
; print s }
incR :: Ref Int -> IO () You can't say
incR r = do { v <- readRef r (r+6), because
: writeRef r (v+1) | r:: Ref Int
}

Concurrency in Haskell
forkIO :: IO () -> IO ThreadId

= forkIO spawns a thread
= Tt takes an action as its argument

webServer :: RequestPort -> IO ()

webServer p = do { conn <- acceptRequest p
; forkIO (serviceRequest conn)
; webServer p }

serviceRequest :: Connection -> IO ()
serviceRequest ¢ = do { ... interact with client ... }

No event-loop spaghetti!

Coordination in Haskell

= How do threads coordinate with each other?

main = do { r <- newRef O
; forkIO (incR r)

;incRr
A race
incR :: Ref Int -> IO ()
incR r = do { v <- readRef r

. writeRef r (v+1) }

STM in Haskell

atomically :: STMa->IO a
nhewTVar :@a->STM (TVar a)
readTVar : TVara->STMa
writeTVar : TVara->a->STM ()

incT :: TVar Int -> STM ()
incT r=do{v<- readTVar r; writeTVar r (v+1) }

main = do { r <- atomically (newTVar 0)
; forkIO (atomically (incT r))
; atomic (incT r)

)

Purity and Testing

Does NOT read Just does what
any global it says on the tin

variables —repeatably

reverse [1,2,3] == [3,2,1]

modify any modify its
global state argument

Purity and Properties

Pure functions They matter!
have nice Justify
properties optimizations

reverse (reverse Xs) == XS
(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

Library functions: What about new

functions?

properties are
well-known

Properties as Tests

pProp reverse xXs =
reverse (reverse Xs) == XS

prop append Xs ys zs =
(xs++ys) ++zs == xs++ (ys++zs)

Heavy use of

Example*> prop reverse [1,2,3] Haskell’s classes!

Example*> quickCheck (prop reverse::[Integer]->Bool)
+++ OK, passed 100 tests.
Example*> quickCheck (prop append.::

[Integer]->[Integer]->[Integer]->Bool)

+++ OK, passed 100 tests.

Claessen and Hughes, ICFP 2000

Debugging Failures

Prop wrong Xxs
reverse XS == XS

Example*> quickCheck (prop wrong::[Integer]->Bool)
*** Fajiled! Falsifiable (after 6 tests and 5 shrinks):
[0,1]

[0] passes
A minimal failing test! JK J [1] passes

[0,0] passes

Just the necessary information to make
the test fail!

A Real Bug

Message 1 sent

Send message withid 1

CAN bUS Queued
Send message with id 3 protocol

stack

Confirm message 1 sent]

CAN id is also
Message 3 sent

bus priority

Standard CAN id Extended CAN id

uint32 [J | |

QuickCheck Testing

e Less code!
— One property generates many tests

* Better testing!
— Combinations you’d never think to test

e Easy-to-debug minimized failing tests
* Very popular in Haskell
— Versions for many other languages
 Found >200 bugs in software going into Volvo

cars © quiQ

"Extending” Haskell

e Haskell has no for-loop, but...

forLoop 1 n s £
| 1 > n = s
| 1 <= n = forLoop (i+l) n (f 1 s) £

 Now we can use it as

sumSq n = forLoop 1 n 0 (\1i s -> i*i+s)

L_____T_____J

specific languages in The loop body is an anonymous
Haskell function passed in to the for loop

Used to embed domain

CHALMERS

Feldspar is a .
7 Jample: Feldspbar <
generator X a-b= Zaibi -
P ERICSSON

scProd’ :: Numeric a =>

Vector (Data a) -> Vector (Data a) -> Data a

scProd’ a b =

forLoop n 0 (\i s -> s + (a'!'i * b'!i))
where n = min (length a) (length b)

void test(struct array * v0, struct array * vl, float * out)

{

uint32 t len0;

float v3;

len0 = min (getLength(v0), getLength(vl));

(* out) = 0.0f;

for (uint32 t v2 = 0; v2 < len0; v2 += 1)

{ v3 = ((* out) + (at(float,v0,v2) * at(float,vl,v2)));
(* out) = v3;

} Executable C code suitable for

running in a radio base station!

A More "Haskellish” Scalar Product

efficient?

mn
a-b= Zaibz’ But is it less
i=1

scProd :: Numeric a =>

Vector (Data a) -> Vector (Data a) -> Data a
scProd a b = sum (zipWith (*) a b)

void test(struct array * v0, struct array * vl, float * out)
{ uint32 t len0;

float v3;

len0 = min(getLength(v0), getLength(vl));

(* out) = 0.0f;

for(uint32 t v2 = 0; v2 < len0; v2 += 1)

{ v3 = ((* out) + (at(float,v0,v2) * at(float,vl,v2)));
(* out) = v3;

}

} OLD

Use the Force

scProd2 :: Numeric a =>

Vector (Data a) -> Vector (Data a) -> Data a
scProd2 a b = sum (force (zipWith (*) a b))

void test(struct array * v0, struct array * vl, float * out)
{ struct array v6 = {0}; float v4;

initArray(&v6, sizeof (float), 100);
for(uint32 t v5 = 0; v5 < 100; v5 += 1) {
at(float, &v6,vb) = (at(float,v0,v5) * at(float,vl,vd));
}
(* out) = 0.0f;
for (uint32 t v3 = 0; v3 < 100; v3 += 1) {
vd = ((* out) + at(float,&vé6,v3));
(* out) = v4;
}
freeArray (&v6) ;

LTE Uplink Receiver

Output
Data

Input
Data

- Channel Estimation
- Data Demodulation and Decoding
* How a 4G base station figures out what your
phone sent!

Recovering the Da

Complex
numbers

Reference symbol

[1 X E
S

Physical Resource Block Interference
0.5 milliseconds!

<>

/ E

Average

Combining Antennae in Feldspar

antennaComb chs input =
map average -- Merging the symbols
$ transpose -- Swap dimensions
$ zipWith (zipWith (*)) chs input
-—- Compensating for the channel

average :: Fraction a => Vector (Data a) -> Data a
average v = sum v / i2n (length v)

Fixing the sizes:

antennaCombFixed =
antennaComb -::
newSize2 4 1024 >-> newSize2 4 1024 >-> id

Fusion!

void test(struct array * v0, struct array * vl,
struct array * out)
{ initArray(out, sizeof (float complex), 1024) ;
for (uint32 t v2 = 0; v2 < 1024; v2 += 1) {
float complex e0; float complex v4;
e0 = (0.0£+0.0£1) ;

for(uint32 t v3 = 0; v3 < 4; v3 += 1) {
vd =
(e0 + (at(float complex, &at (struct array,v0,v3) ,h v2)

* at(float complex, &at(struct array,vl,v3) ,v2)));
el = v4;

}

at (float complex,out,v2) = (e0 / (4.0£+0.0fi));
}

e Just two nested loops!

Feldspar in a Nutshell

* Feldspar restructures code to eliminate
intermediate data, fuse loops

* Can also fuse parallelism with sequential code
— An easy way to explore alternative parallelisations

e http://github.com/feldspar

DSLs in Haskell

* Borrow parser, type-checker, module system...
from Haskell

* Inherit Haskell’s expressive power
— higher-order function, classes...

* Let the DSL designer focus on the cool,
domain-specific stuff!

Haskell is Fun!

* haskell.org

— The Haskell hub—where to download, online
books & tutorials, you name it

* haskell-cafe@haskell.org

— Community mailing list for all kinds of questions

* hackage.haskell.org

— A bazillion libraries

e The Haskell Platform

— Easy multi-platform download and installation of
compiler and core libraries

Haskell Curry (1900-1982)

Currying

Every other programming language in the world

f :: (Integer,Integer) —> Integer
f(x,y) = x*x + y*y

> £(3,4)

25

Every functional language

f :: Integer -> Integer —> Integer
f xy = xX*xxX + y*y
> £ 3 4

25

Currying

Every other programming language in the world

f :: (Integer,Integer) —> Integer
f(x,y) = x*x + y*y

> £(3,4)

25

Every functional language

f :: Integer —> (Integer —> Integer)
(f xX) v = x*x + y*xy

Currying

Every other programming language in the world

f :: (Integer,Integer) —> Integer
f(x,y) = x*x + y*y

> £(3,4)

25

Every functional language

f :: Integer -> Integer —> Integer
f xy = xX*xxX + y*y
> £ 3 4

25

Haskell
Type Classes

Bird and Wadler (1988)

Richard Bird

Philip Wodler
Introduction to
Functional

Polymorphism

e Ad hoc polymorphism
e Parametric polymorphism

e Subtype polymorphism

Type classes

class Ord a where
(<) :: a —> a —> Bool

instance Ord Int where
(<) = primitivelLessInt

instance Ord Char where

(<) = primitivelLessChar
max :: Ord a => a —-> a —> a
max xy | x <y = vy

| otherwise = X

maximum :: Ord a => [a] —-> a
maximum [x] = X
maximum (xX:Xs) = max X (maximum XS)
maximum [0,1,2] == 2

maximum "abc" == '’

Translation

data Ord a = Ord { less :: a —> a —> Bool }
ordInt :: Ord Int
ordInt = Ord { less = primitivelLessInt }
ordChar :: Ord Char
ordChar = 0Ord { less = primitivelLessChar }
max :: Ord a —> a —> a —> a
max d x y | less d xy = X

| otherwise =y
maximum :: Ord a —-> [a] —-> a
maximum d [x] = X
maximum d (xX:xs) = max d X (maximum d Xxs)
maximum ordInt [0,1,2] == 2
maximum ordChar "abc" == ’c’

Object-oriented

max
Int Int
0 1

dictionary

(<) :: Int -> Int -> Bool

Type classes

max

L)

Int Int
0 1
dictionary

(<) :: Int -> Int -> Bool

Type classes, continued

instance Ord a => Ord [a] wher
[1 < [] =
[] < y:ys =
xXx:xs < [] =
X:xXs < y:ys | x <y
| v < x
| otherwise =
maximum ["zero", "one","two"] =

maximum [[[O], [11],[[0,1]]] ==

e
False
True
False
True
False
xs < yS

= "zero"
[[0,1]]

Translation, continued

ordList :: Ord a —> Ord [a]
ordlList d = Ord { less = 1t }
where
1t d [] [] = False
1t d [] (y:ys) True
1t d (x:xs) [] False
1t d (x:xs) (y:ys) | less d x y = True
| less d y x = False
| otherwise = 1t d xs ys
maximum dO0 ["zero", "one","two"] == "zero"
maximum d1 [[[O], [1]],([[0,1]]] == [[Q,1]]
where

d0 = ordList ordChar
dl = ordList (ordList ordInt)

Maximum of a list, in Java

public static <T extends Comparable<T>>
T maximum(List<T> elts)

T candidate = elts.get (0);
for (T elt : elts) {
1f (candidate.compareTo(elt) < 0) candidate = elt;

}

return candidate;
List<Integer> ints = Arrays.asList(0,1,2);
assert maximum(ints) == 2;

List<String> strs = Arrays.aslList ("zero","one","two");
assert maximum(strs) .equals("zero");

List<Number> nums = Arrays.asList(0,1,2,3.14);
assert maximum(nums) == 3.14; // compile-time error

Naftalin and Wadler (2006)

Speed Up The fava Developiment Process

Java
CNEerics

and Collections

Meerice Naftalin
(.'-)’R.E"_I_\I”b & Philip Wadler

