Web application security for
dynamic languages

zane@etsy.com
@zanelackey

Who am I?

Security Engineering Manager @ Etsy
Lead AppSec/NetSec/SecEng teams

Formerly @ iSEC Partners

Books/presentations primarily focused on
application and mobile security

What is Etsy?

Online marketplace for creative independent
businesses

Scale at Etsy

1.5B pageviews/mo
A0M uniques/mo
#50 by US traffic

* November2012, Alexa site ranking

About this talk

Real world approaches to web application
security challenges

About this talk

Specifically, techniques that are simple and
effective

Continuous deployment?

| DONT ALWAYS TEST MY

<- What it
(hopefully)
isn’t

i,g.
BUT WHENIDO,IDOITIN PRODUCTION.
STAY ON CALL MY FRIENDS

Three words: iterate, iterate, iterate

Etsy pushes to production 30 times a day on
average

(dogs push too)

But doesn’t the rapid
rate of change mean
things are less
secure?!

Actually, the opposite is
true

: y PN L%
Vs o)AL
> 5 . \

: | TR |
. ; i
’ 1

e i\
- \
) \‘
W
'

\
1

!

only dreams now

Being able to deploy quick is our #1 security
feature

Compared to

We’ll rush that security fix. It will go out in the
next release in about 6 weeks.

- Former vendor at Etsy

What it boils down to
(spoiler alert)

Make things safe by default
Detect risky functionality / Focus your efforts
Automate the easy stuff

Know when the house is burning down

Safe by default

How have the traditional defenses for XSS
worked out?

Safe by default

Problems?
Often done on a per-input basis
Easy to miss an input or output

May use defenses in wrong context

Input validation pattern may block full HTML injection, but
not injecting inside JS

May put defenses on the client side in JS
Etc ...

These problems miss the point

Safe by default

The real problem is that it’s hard to find where
protections have been missed

How can we change our approach to make it
simpler?

Safe by default

Input validation
Output encoding

Safe by default

Input validation
Output encoding

Safe by default

Encode dangerous HTML characters to HTML
entities at the very start of your framework

To repeat... Before input reaches main
application code

Safe by default

On the surface this doesn’t seem like much of a
change

Safe by default

Except, we've just made lots of XSS problems
grep-able

Oh yeah!

Safe by default

Now we look for a small number of patterns:

HTML entity decoding functions or explicit string
replacements

Data in formats that won’t be sanitized
— Ex: Base64 encoded, double URL encoded, etc

Code that opts out of platform protections

Safe by default

Fundamentally shifts us:

From: “Where is my app missing protections?”
(hard)

To: “Where is it made deliberately unsafe?”
(easy)

Safe by default

Obviously not a panacea
DOM based XSS
Javascript: URLs
Can be a pain during internationalization efforts

Focus your efforts

Focus your efforts

Continuous deployment means code ships fast

Things will go out the door before security
team knows about them

How can we detect high risk functionality?

Detect risky functionality

Know when sensitive portions of the codebase
have been modified

Build automatic change alerting on the
codebase
|dentify sensitive portions of the codebase
Create automatic alerting on modifications

Detect risky functionality

Doesn’t have to be complex to be effective

Approach:
shalsum sensitive platform level files
Unit tests alert if hash of the file changes

Notifies security team on changes, drives code
review

Detect risky functionality

At the platform level, watching for changes to
site-wide sensitive functionality

CSRF defenses
Session management
Encryption wrappers
Login/Authentication
Etc

Detect risky functionality

At the feature level, watching for changes to
specific sensitive methods

ldentifying these methods is part of initial
code review/pen test of new features

Detect risky functionality

Watch for dangerous functions

Usual candidates:
File system operations
Process execution/control
Encryption / Hashing
Etc

Detect risky functionality

Unit tests watch codebase for dangerous
functions
Split into separate high risk/low risk lists

Alerts are emailed to the appsec team, drive
code reviews

Detect risky functionality

Monitor application traffic

Purpose is twofold:

Detecting risky functionality that was missed by
earlier processes

Groundwork for attack detection and verification

Detect risky functionality

Regex incoming requests at the framework

Sounds like performance nightmare, shockingly
isn’t

Look for HTML/IJS in request

This creates a huge number of false positives
That’s by design, we refine the search later

Detect risky functionality

We deliberately want to cast a wide net to see
HTML entering the application

From there, build a baseline of HTML
Entering the application in aggregate
Received by specific endpoints

Detect risky functionality

What to watch for:

Did a new endpoint suddenly show up?
A new risky feature might’ve just shipped

Did the amount of traffic containing HTML just
significantly go up?
Worth investigating

Ad‘u A ﬁ Jh'l oMM L 2 J'A.MJ'h ‘t .“'\/MM M
13:00 14:00 V 16:00

Detect risky functionality

Aggregate increased, time to investigate

Automate the easy stuff

Automate the easy stuff

Automate finding simple issues to free up
resources for more complex tasks

Use attacker traffic to automatically drive
testing

We call it Attack Driven Testing

Automate the easy stuff

Some cases where this is useful:

Application faults
Reflected XSS
SQLi

Automate the easy stuff

Application faults (HTTP 5xx errors)

As an attacker, these are one of the first signs
of weakness in an app

As a defender, pay attention to them!

Automate the easy stuff

Just watching for 5xx errors results in a lot of
ephemeral issues that don’t reproduce

Instead:

Grab last X hours worth of 5xx errors from access
logs
Replay the original request

Alert on any requests which still return a 5xx

Automate the easy stuff

Cron this script to run every few hours

If a request still triggers an application fault
hours later, it’s worth investigating

Automate the easy stuff

Similar methodology for verifying reflected
XSS

For reflected XSS we:
ldentify requests containing basic XSS payloads
Replay the request
Alert if the XSS payload executed

Automate the easy stuff

Basic payloads commonly used in testing for
XSS:

alert()
document.write()
unescape()
String.fromCharCode()
etc

Automate the easy stuff

We created a tool to use NodelS as a headless
browser for verification

Automate the easy stuff

1. Fetch URL containing potential XSS

T~
3 -
=

Test webserver

Automate the easy stuff

2. Page contents returned
to a temp buffer, not

interpreted yet
<HTML>
<hum> CEEE——

<title>HTML</title>
<body>
This is HTML!

’
</body>
</html>

Test webserver

Automate the easy stuff

3. Inject our instrumented JS into page contents /\
:zttlr:|>>l-iTML</titIe> :2:{:I>>HTML</title> -
<body> <body>
This is HTML! This is HTML!
</body> </body> \/

</html> </html>

Our JS Page contents Test webserver

Automate the easy stuff

4. Combination of instrumented JS + page
contents interpreted

CEE——
<HTML> <HTML>

—
<html> + <html>
<title>HTML</title> <title>HTML</title>

<body> <body>

This is HTML! This is HTML!
</body> </body>
</html> </html> Test we b server

Our JS Page contents

Automate the easy stuff

5. If instrumented JS is executed, alert

appsec team for review
\ \;

Test webserver

Automate the easy stuff

Sample instrumented JS:

(function () {
var proxiliedAlert = window.alert;
window.alert = function () {

locati1on="XSSDETECTED";
}y
F) ()

Automate the easy stuff

* Open sourced NodelS tool
— https://github.com/zanelackey/projects

* Combine this approach with driving a browser
via Watir/Selenium

— Make sure to use all major browsers

Know when the house is
burning down

Know when the house is burning down

Graph early, graph often

Know when the house is burning down

Which of these is a quicker way to spot a
problem?

Know when the house is burning down

se.css” "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.7; rv:10.0) Gecko/20100101 Fi
refox/10.0" - - -

- = = = [20/Feb/2012:22:32:10 +0000] "GET /images/sprites/buttons-master.png HTT
P/1.1" 304 - "http:// assets/dist/88166671/css/
modules/buttons-new.css" "M021lla/5 0 (Mactntosh Intel Mac 0S X 10.7; rv:10.0)
Gecko/20100101 Firefox/10.0" - - -

- 12156

- = = - [20/Feb/2012:22: 32 10 +0000] "GET /images/spinners/spinnerl6.gif HTTP/1.
1" 304 - "http://: ' Vassets/dist/88166671/css/base
.css" "Mozilla/5.0 (Mac1ntosh Intel Mac 0S X 10.7; rv:10.0) Gecko/20100101 Fire
fox/10.0" - - - :

- - - - [20/Feb/2012:22:32:10 +0000] “"GET /assets/dist/88166671/3s/convos/thread

s.js HTTP/1.1" 200 61743 "http:// /conversations?re

f=si_con" "Mozilla/5.0 (Mac1ntosh Intel Mac 0S X 10.7; rv:10.9) Gecko/20100101
Firefox/10.0" - - -

- = = = [20/Feb/2012:22:32:10 +0000] "GET /assets/d15t/88166671/]s/bootstrap/com
mon.js HTTP/1.1" 200 127238 "http://) ‘conversations
tref=si_con" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.7; rv:10.0) Gecko/201001
01 Firefox/10.0" - - - 928201

- = = = [20/Feb/2012:22:32:11 +0000] "GET /assets/dist/88166671/js/overlays/exte
rnal-link.js HTTP/1.1" 200 487 "http:// /conversati
ons?ref=si_con" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.7; rv: 10 9) Gecko/201

Know when the house is burning down

‘ e O OJ (") Security \L
€ C | @_lsecurlty php?m=1&time=... v7 | @

Login failures

3.5
3.0
2.5
2.0

15
1.0
0.50

0
02/14 02/15 02/16 02/17 02/18 02/19 02720

Know when the house is burning down

* Methodology:
— Instrument application to collect data points
— Fire them off to an aggregation backend
— Build individual graphs
— Combine groups of graphs into dashboards

* We've open sourced our instrumentation
library

— https://github.com/etsy/statsd

Know when the house is burning down

‘ e O OJ (") Security \L
€ C | @_lsecurlty php?m=1&time=... v7 | @

Login failures

3.5
3.0
2.5
2.0

15
1.0
0.50

0
02/14 02/15 02/16 02/17 02/18 02/19 02720

Know when the house is burning down

€ - ca | €
login fails
Closed Account Wrong Password Invalid Username
3.00 15 1.00
2,50 125
0.75
2.00 10
150 75 0.50
1.00 5
0.25
0.50 25
0 0 0
23:20 23:30 23:40 23:50 00:00 00:10 23:20 23:30 23:40 23:50 00:00 00:10 23:20 23:30 23:40 23:50 00:00 00:10
Invalid Email Unassigned Username Unassigned Email
2.00 175 6.0
15
4.8
150 125
10 36
1.00
75 2.4
5
0.50
25 12
0 0 0
23:20 23:30 23:40 23:50 00:00 00:10 23:20 23:30 23:40 23:50 00:00 00:10 23:20 23:30 23:40 23:50 00:00 00:10
The Big Board
48
36
24
12
0
23:20 23:30 23:40 23:50 00:00 00:10
M Deactivated M Wrong Password [Invalid Username [1 Invalid Email
¥ Unassigned Username [m} Unassigned Email

Know when the house is burning down

Now we can visually spot attacks

Know when the house is burning down

But who's watching at 4AM?

Know when the house is burning down

In addition to data visualizations, we need
automatic alerting

Look at the raw data to see if it exceeds
certain thresholds

Works well for graphs like this...

Know when the house is burning down

600

480

360

240

120

0

M pPHP Warnings M Code deploy

16:00

16:10

16:20 16:30

A

16:40

16:50

Know when the house is burning down

But not like this...

Know when the house is burning down

Password resets
0.12

0.10
0.08
0. 06

: W"Wﬂ \

02/19 12AM 02/19 12PM 02/20 12AM 02/20 12PM

Know when the house is burning down

We need to smooth out graphs that follow
usage patterns

Use exponential smoothing formulas like Holt-
Winters

Math is hard, let’s look at screenshots!

Know when the house is burning down

| © O 0 / ©render (330x250) x (2 =
Password resets €« o] 3= WEEETEERR
0.12 0.025
0.10 1 ‘ 0.02
0,08 0.015
L“ l ’ J “" m 0.01
0.06 “J \ | ' |
004 ff MN \J I\ 0.005 J ﬂ A
| I 1U,J N B
0,02 III
’ W‘ll }J * -0.005 ' I
0 -0.01
02/19 12AM 02/19 12PM 0220 12AM 02/20 12PM 02720 1281 | oaronzed
W holtWintersAberration(stats.logins.password_reset)

Know when the house is burning down

Now that we’ve smoothed out the graphs...

Use the same approach as before:
Grab the raw data
Look for values above/below a set threshold
Alert

Know when the house is burning down

Alert on events that (should) never happen

Know when the house is burning down

Successful attacks don’t happen in a vacuum!
They generate signals

Know when the house is burning down

Figure out what the signal of a weakness
being identified looks like

Alert when a signal occurs

Fix the identified weaknesses

Know when the house is burning down

Two examples: SQLi and code execution

Know when the house is burning down

The road to exploited SQLi is littered with
broken queries

Watch the logs for SQL syntax errors
Alert when they appear
Fix the lack of validation allowing the error

Know when the house is burning down

Further along the attack process, a SQLi attack
looks like... your database

Sensitive DB table names shouldn’t be
showing up in requests

Alert if they do!

Know when the house is burning down

A funny story about code execution...

Know when the house is burning down

preg replace() in PHP has an interesting
modifier

“e (PREG _REPLACE EVAL) If this modifier is set,
preg replace() does normal substitution of

backreferences in the replacement string,
evaluates it as PHP code, and uses the result for

replacing the search string. “

Know when the house is burning down

* preg_replace() in PHP has an interesting
modifier

“e (PREG _REPLACE EVAL) If this modifier is set,
preg replace() does normal substitution of
backreferences in the replacement string,
evaluates it as PHP code, and uses the result for
replacing the search string.”

Know when the house is burning down

What do the signals for this look like?

oo r 2 nexty
D O ;5o I (o) (ot D (Y (7

trrorHandler.php:41] (IR preg replace(): Unknown modifier 'c' at
Controller.php line 204,

Know when the house is burning down

You can’t fix what you’re not alerting on

Conclusions

@ Metro

Have the ability to deploy/respond quickly

Make things safe by default

Focus your efforts / Detect risky functionality

Automate the easy stuff

Know when the house is burning down

Thanks!

zane@etsy.com @zanelackey

References / Thanks

* DevOpsSec:
http://www.slideshare.net/nickgsuperstar/
devopssec-apply-devops-principles-to-security

* Special Thanks:
— Nick Galbreath, Dan Kaminsky, Marcus Barczak

