
Data Modeling for NoSQL

Tony Tam
@fehguy

Data Modeling?!

Smart
Modeling

makes NoSQL
work	

Why Modeling Matters!

• NoSQL => no joins!
• What replaces joins?!

•  Hierarchy!
•  Duplication of data!
•  Different models for querying, indexing!

• Your optimal data model is (probably) very
different than with relational!
•  Simpler!
•  More like you develop!

Stop Thinking Like This!!

endless layers
of abstraction	

(and misery)	

Hierarchy before NoSQL!

• Simple User Model!

Hierarchy before NoSQL!

• Tuned Queries!
•  Write some brittle SQL:!

•  “select user.id, … inner join settings on …!
•  Pick out the fields and construct object hierarchy

(this gets nasty, fast)!
•  (outer joins for optional values?)!

• Object fetching!
•  Queries follow object graph, PK/FK!
•  5 queries to fetch object in this example!

Hierarchy before NoSQL!

Hierarchy with NoSQL!

• JSON structure mapped to objects!
•  Fetch json from MongoDB**!
•  Unmarshall into objects/tuples!
•  Use it!

Using JSON4S

Hierarchy with NoSQL!

Focus on your
Software, not

DB layer!	

Hierarchy with NoSQL!

• Write operations!
•  Atomic upsert (create, update or fail)!

!
•  Saves all levels of object atomically!
•  Reduces need for transactions!

Hierarchy with NoSQL!

• Write operations!
•  Atomic upsert (create, update or fail)!

!
•  Saves all levels of object atomically!
•  Reduces need for transactions!

All or
nothing	

Convenience
not magic	

Unique Identifiers in your Data!

• Relational design => PK/FK!
•  Often not “meaningful” identifiers for data!

• User Data Model!

Unique Identifiers in your Data!

• Relational design => PK/FK!
•  Often not “meaningful” identifiers for data!

• User Data Model!
Unique by
username	

Unique Identifiers in your Data!

• Words! Ensured to
be constant	

Data Duplication !

• Without Joins, what about SQL lookup
tables?!
•  Duplication of data in NoSQL is required!

• Trade storage for speed!

Data Duplication !

• Without Joins, what about SQL lookup
tables?!
•  Duplication of data in NoSQL is required!

• Trade storage for speed!

…Can move
logic to app	

Data Duplication!

• Many fields don’t change, ever!
• But… many do!

•  New decisions for the developer!!
•  Often background updates!

Data Duplication!

• Many fields don’t change, ever!
• But… many do!

•  New decisions for the developer!!
•  Often background updates!

How often
does this
change?	

Data Duplication!

Reaching into Objects!

•  Incredible feature of MongoDB!
•  Dot syntax safely** traverses the object graph!

Inner Indexes!

• Convenience at a cost!
•  No index => table scan!
•  No value? => table scan!
•  No child value? => table scan!

• Table scan with big collection?!
• Can’t index everything!!

96GB of
Indexes?	

Inner Indexes!

• This will should drive your Data Model!
• Sparse Data test!

Even with only
2000 non-empty

values!	

Adding & Modifying!

• Append in mongo is blazing fast!
•  “tail” of data is always in memory!
•  Pre-allocated data files!

• Main expense is “index maintenance”!
•  Some marshalling/unmarshalling cost**!

• Modifying? Object growth!
•  Pre-allocation of space built in collection design!

Adding & Modifying!

• Each object has allocated space!
•  Exceed that space, need to relocate object!
•  Leaves “hole” in collection!

• Large increases to documents hurts your
overall performance!

• Your data model should strive for equally-
sized objects as much as possible!

Retrieval!

• Many same rules apply as relational!
•  Indexes !

•  complex/inner or not!
•  Indexes in RAM? Yes!
•  Cardinality matters!

• New(ish) considerations!
•  Complex hierarchy not free!

•  Marshalling ó unmarshalling!

Marshalling & Unmarshalling!
R

ec
or

ds
/s

ec

Object
complexity	

Marshalling & Unmarshalling!

• All you can eat from your Data Model?!
• Techniques have tremendous impact!

•  Development ease until it matters!
•  50% speed bump with manual mapping!

Only demand
what you can

consume!	

Making the most of _id!

•  Indexes matter!
• Tailor your _id to be meaningful by access

pattern!
•  It’s your first defense when auto-sharding!

• Date-driven data?!
•  Monotonically _id value!

•  Ensures recent data is “hot”!

Making the most of _id!

• Other time-based data techniques!

• Flexibility in querying!

Making the most of _id!

• Other time-based data techniques!

• Flexibility in querying!

Case-
sensitive
REGEX is
your pal	

Making the most of _id!

• Hot indexes are happy indexes!
•  Access should strive for right bias!

• Random access with large indexes hit disk!

17	

15	
 27	

Your Data Model!

• NoSQL gets you started faster!
• Many relational pain points are gone!
• New considerations (easier?)!
• Migration should be real effort!
• Designed by access patterns over object

structure!
• Don’t prematurely optimize, but know

where the knobs are!

More Reading!

• http://tech.wordnik.com!
• http://github.com/wordnik/wordnik-oss!
• http://developer.wordnik.com!
• http://slideshare.net/fehguy!

