Dynamo:
Theme and Variations



@shanley

),







Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on™ experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in 2 manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D42 [Operating Systems|: Storage Management; D.4.5
[Operating Systems|: Reliability; D.4.2 [Operating Systems):
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon's platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition. to support continuous growth. the

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon $3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer



amazon

Shop by
Department ~

Shanley's Amazon.com Today's Deals Gift Cards Help

Search Al =

Today's Deals Gold Box Black Friday CyberMonday Top Holiday Deals AllDeals Coupons Outlet

Hello, Sha
Your Ac

Deals & Bargains Warehouse Deals  Digital Deals

PHILIPS
@ WORELCO

FACE

All the tools you need from head to toe. ’ém “ H T m"”‘ E

£

Deal of the Day

Nikon COOLPIX S9200 Digital
Camera

Power and portability blend perfectly into
the COOLPIX S9200. Photograph everything
from the nightlife in Cancun to the vibrant
detalls of a flower market with the S5200's
18x wide-angle zoom. Create stunning low-
light photos without a flash, thanks to its
16.0 megapixel CMOS sensor. Shoot with
high-speed framing rates,.... read more
List Price: $209:85

Yesterday's Price: $299.00
Today's Discount: -$130.00

Gold Box Price: $169.00(44% off)

13 Comments | e ¥ (80)
Share [2' (3 = Prime 'QW

COUNTDOWN TO

Black Friday Deals Week
16 : 04 : 09 : 37
Oays Hows Mins Secs

» See all Amazon deals

Best Deals > More of our best deals

- GO[Id BOXE{VQnt Countdown to Black Friday

Don't Miss a Single Deal

rinbox  »Learn more

Stay connected via e-mail, Facebc

Lightning Deals (-] 10-130f 1.

(+) 3:00 PM PDT - Jewelry Deal

(+] 4:00 PM PDT - Jewelry Deal All

(<) 5:00 PM PDT - Clothing Deal

ExOfficio Men's Give-:
List Price: $26<

Amazon's Price: $16.2
Deal Price: $13.6

Comments | defesrsed (124)

Select options to see Lightnil
availability.

24% now claimed
01:07:48 remaining

|__” Select options ”J Drim

(+/ 9:00 PM PDT - Upcoming Deal

. ¢« Holid

& Daily |
»

ja jea ]

Sort by ( Original Order ]




amazon

Shop by
Department ~

Shanley's Amazon.com

Search Al =

Today's Deals

Gift Cards Help

Hello, Sha
Your Ac

Today's Deals Gold Box Black?a Cyber Monday Top Holiday Deals  AllDeals Coupons Outlet Deals & Bargains Warehouse Deals  Digital Deals

@ NORELCO

[ HEAD
All the tools you need from head to toe. \ a ‘ !

FACE

-8l =N

3

Deal of the Day

Share 1 3 ¥|

50

COUNTDOWN TO

Black Friday Deals Week bl

r— GO{ld BOX Elvent: Countdown to Black Friday

Stay connected via e-mail, Facebc

Lightning Deals |~ 10-13of 1.

(+/ 3:00 PM PDT - Jewelry Deal

(+] 4:00 PM PDT - Jewelry Deal All

(<) 5:00 PM PDT - Clothing Deal

ExOfficio Men's Give-:
List Price: $26£

Amazon's Price: $16.2
Deal Price: $13.6

Nikon COOLPIX S9200 Digital
Camera

Power and portability blend perfectly into
the COOLPIX S9200. Photograph everything
from the nightlife in Cancun to the vibrant
detalls of a flower market with the S5200's
18x wide-angle zoom. Create stunning low-
light photos without a flash, thanks to its
16.0 megapixel CMOS sensor. Shoot with

high-speed framing rates,.... read more
List Price: $28995 Comments | defesrsed (124)
Yesterday's Price:  $299.00 Select options to see Lightni

Today's Discount: -$130.00
Gold Box Price: $169.00(44% off)

13 Comments | rfrfrd’ [+ (50)

(g_Add to Cart J

/

availability.

24% now claimed | |_ Selectoptions | Drir

01:07:48 remalning

Prime

(+/ 9:00 PM PDT - Upcoming Deal

. ¢ Holid
&

Single Deal

-]

® 16 : 04 : 08 :37 » See all Amazon deals : ir it > LEaD mace: Daily |
Days Hows Mins Secs S )
e rv I c e S Best Deals > More of our best deals Sort by (_Original Order +)




Cassandra

sriak



Hello, Shanley Join
Your Account~ Prime v e Cart v

Your Shopping Cart is empty.

Give it purpose—fill it with books, DVDs,
clothes, electronics, and more.

View Cart (0 items)




* Global access * Multiple machines * Multiple datacenters

* Scale to peak loads easily  ® Continuous failure



©Sun

" ORACLE

Tuple {

Attribute
——

—
Relation



Traditionally production systems store their
state in relational databases. For many of the
more common usage patterns of state
persistence, however, a relational database is
a solution that is far from ideal.

Most of these services only store and retrieve
data by primary key and do not require the
complex querying and management
functionality offered by an RDBMS.

This excess functionality requires expensive
hardware and highly skilled personnel for its
operation, making it a very inefficient solution.

Although many advances have been made in
the recent years, it is still not easy to scale-out
databases or use smart partitioning schemes
for load balancing.

Dynamo: Amazon’s Highly Available Key-value Store



CAP Theorem




People tend to focus on consistency/availability as the sole driver of
emerging database models because it provides a simple and academic
explanation for more complex evolutionary factors. In fact, CAP
Theorem, according to its original author, “prohibits only a tiny part of
the design space: perfect availability and consistency in the presence of
partitions, which are rare... there is little reason to forfeit C or A when
the system is not partitioned.” In reality, a much larger range of
considerations and tradeoffs have informed the “NoSQL” movement...



Traditionally production systems store their
state in relational databases. For many of the
more common usage patterns of state
persistence, however, a relational database is
a solution that is far from ideal.

Most of these services only store an
data by primary key and do not require the
complex querying and management
functionality offered by an RDBMS.

This excess functionality requires expensive
hardware and highly skilled personnel for its
operation, making it a very inefficient solution.

In addition, the available replication
technologies are limited and typically choose
consistency over availability.

Although many advances have been made in
the recent years, it is still not easy to scale-out
databases or use smart partitioning schemes
for load balancing.

Dynamo: Amazon’s Highly Available Key-value Store




Spanner is Google’s scalable, multi-version,
globally- distributed, and synchronously-
replicated database... It is the first system to
distribute data at global scale and support
externally-consistent distributed transactions...

Spanner is designed to scale up to millions of
machines across hundreds of datacenters and
trillions of database rows... Spanner’s main
focus is managing cross-datacenter replicated
data...

Spanner started... as part of a rewrite of
Google’s advertising backend called F1 [35].
This backend was originally based on a MySQL
database...

Resharding this revenue-critical database as it
grew in the number of customers and their
data was extremely costly. The last resharding
took over two years of intense effort...

Spanner: Google’s Globally-Distributed Database



Shanley’s Theorem




Database design is driven
by a virtuous tension
between the requirements
of the app, the profile of
developer productivity,
and the limitations of the
operational scenario.



requirements
of the app

* Stringent latency requirements measured at the 99.9% percentile ® Highly available

* Always writeable * Modeled as keys/values



the profile of
developer productivity

* Choice to manage conflict resolution themselves or manage on the data store level

* Simple, primary-key only interface * No need for relational data model



* Functions on commodity hardware ¢ Each object must be replicated across multiple DCs

* (Can scale out one node at a time with minimal impact on system and operators

limitations of the
operational scenario.






requirements
of the app

* 1995: Less than 40 million internet users; now: 2.4 billion

* Latency perceived as unavailability * New types of applications



the profile of
developer productivity

e Much more data * Unstructured data
* New kinds of business requirements

* App scales gracefully without high development overheard



* Scale-out design on less expensive hardware * Ability to easily meet peak loads

* Run efficiently across multiple sites ¢ Low operational burden

limitations of the
operational scenario



Aspects of the database:

How to distribute data around the cluster
Adding new nodes

Replicating data
Resolving data conflicts

Dealing with failure scenarios
Data model



how to distribute
data around the cluster



how to distribute
data around the cluster



Bunny Names A-G

‘vu

D0V XA
AD0TWX3A
D0V X3A

Bunny Names H-R

Bunny Names R-Z

m m m
z z z
> b >
« 3 o«
= = =
o o o
o o o
2 2 2
o o o
c c c
o o =

how to distribute data
around the cluster



B 7 | Bunny Names Disproportionately Trend Towards Bunny, Cuddles, Fluffy,
< Mr. Bunny, Peter Rabbit, Velveteen, Peter Cottontail, and Mitten

how to distribute data
around the cluster



how to distribute data
around the cluster



* Reduce risk of hot spots in the database * Datais automatically assigned to nodes

how to distribute data
around the cluster



2'60\/0

1
2160/

how to distribute data
around the cluster



2|60/2

how to distribute data
around the cluster



2'60\/0

/a single vnode/partition

a ring with 32 partitions «2160/4

1NOdAdC 4

\

hash(<<"artist">>,<<"REM">>)

t
2160/9

how to distribute data
around the cluster



adding new nodes



m
=
>
n
=
(9}
(2]

addi nodes




$Ssun

oRACLE

m
()
>
@
=t
o
o
o
o
c

dano1d JILsv13

adding new nodes



adding new nodes



D O E e

our experience, symmetry simplifies the process of system
provisioning and maintenance.

D e

Decentralization: An extension of symmetry, the design should
favor decentralized peer-to-peer techniques over centralized
control. In the past, centralized control has resulted in outages and
the goal is to avoid it as much as possible. This leads to a simpler,
more scalable, and more available system.

Heterogeneity: The system needs to be able to exploit
heterogeneity in the infrastructure it runs on. e.g. the work
distribution must be proportional to the capabilities of the
individual servers. This is essential in adding new nodes with
higher capacity without having to upgrade all hosts at once.

3. RELATED WORK

3.1 Peer to Peer Systems

There are several peer-to-peer (P2P) systems that have looked at
the problem of data storage and distribution. The first generanon
of P2P systems, such as Freenet and Gnutella’, were
predominantly used as file sharing systems. These were examples
of unstructured P2P networks where the overlay links between
peers were established arbitrarily. In these networks, a search
query is usually flooded through the network to find as many
peers as possible that share the data. P2P systems evolved to the
next generation into what is widely known as structured P2P
networks. These networks employ a globally consistent protocol
to ensure that any node can efficiently route a search query to
some peer that has the desired data. Systems like Pastry [16] and
Chord [20] use routing mechanisms to ensure that queries can be
answered within a bounded number of hops. To reduce the
additional latency introduced by multi-hop routing, some P2P
systems (e.g., [14]) employ O(1) routing where each peer
maintains enough routing information locally so that it can route
requests (to access a data item) to the appropriate peer within a
constant number of hops.

" http://freenetproject.org/, http://www.gnutella.org

WPdAlL Vulliiivio alv

resolution procedure{' shard

system that does not =

<]

achieves high availability and scalability using replicatifn. The
Google File System [6] is another distributed file systenybuilt for
hosting the state of Google’s internal applications. GFS uses a
simple design with a single master server for hosting the entire
metadata and where the data is split into chunks
chunkservers. Bayou is a distributed relational
that allows disconnected operations and provi
consistency [21].

eventual data

Among these systems, Bayou, Coda and Ficus/allow disconnected
operations and are resilient to issues such g8 network partitions
and outages. These systems differ on thgfir conflict resolution
procedures. For instance, Coda and Ficuf perform system level
conflict resolution and Bayou allows apglication level resolution.
All of them, however, guarantee eventyal consistency. Similar to
these systems, Dynamo allows reag and write operations to
continue even during network pargftions and resolves updated
conflicts using different conflict resolution mechanisms.
Distributed block storage systems like FAB [18] split large size
objects into smaller blocks and stores each block in a highly
available manner. In comparison to these systems, a key-value
store is more suitable in this case because: (a) it is intended to
store relatively small objects (size < 1M) and (b) key-value stores
are easier to configure on a per-application basis. Antiquity is a
wide-area distributed storage system designed to handle multiple
server failures [23). It uses a secure log to preserve data integrity,
replicates each log on multiple servers for durability, and uses
Byzantine fault tolerance protocols to ensure data consistency. In
contrast to Antiquity, Dynamo does not focus on the problem of
data integrity and security and is built for a trusted environment.
Bigtable is a distributed storage system for managing structured
data. It maintains a sparse, multi-dimensional sorted map and
allows applications to access their data using multiple attributes
[2). Compared to Bigtable, Dynamo targets applications that

availability where updates 2
network partitions or server




adding new nodes



* “decoupling of partitioning and partition placement”

adding new nodes



replicating data



master

<«—— Slave
slave ——>

replicating data



writes
master

<«—— Slave
slave ——>

replicating data



writes
master

reads

<——— Slave

replicating data



master

slave ——>

replicating data



master

1. Time to figure out the master is gone
2. Master election

<«—— Slave
slave ——>

replicating data



master

Consistency > Availability

Unavailable to writes until data can
be confirmed correct

<«—— Slave
slave ——>

replicating data



replicating data



“Every node in Dynamo should have the same
set of responsibilities as its peers; there should

be no distinguished node or nodes that take
special roles or extra set of responsibilities.”

replicating data



writes

writes reads writes
reads reads
reads writes reads
. reads
writes writes
reads writes reads

replicating data



writes

writes reads writes
reads reads
reads writes reads
. reads
writes writes
reads writes reads

e Clients can read / write to any node
* All updates reach all replicas eventually

replicating data



e w and r values

replicating data



* number of replicas that need to participate in a read/write for a
success response

replicating data



* only one node needs to be available to complete write request

replicating data



replicatfng data



* reads when not all writes have propagated (laggy or down node)

resolving conflicts



* different clients update at the exact same time

resolving conflicts



DKBVISTFUPPmcw]
TLmsTlcmsJ1nA8qz
K7HcQwgfBOhzNac
XCYWCcA1lZlesA



Whether one object is a direct descendant of the other
Whether the objects are direct descendants of a common parent

Whether the objects are unrelated in recent heritage

* vector clocks that show relationships between objects

resolving conflicts



e vector clock is updated when objects are updated
e |ast-write wins or conflicts can be resolved on client side

resolving conflicts



click to LOOK |NS|DE!
— L{j

Bike Repair &
Maintenance

* if stale responses are returned as part of the read,
those replicas are updated

resolving conflicts



failure conditions



*n=3

failure conditions



writes & updates

; os § Femad ) § en = Su § o= Su
I 1

*n=3

failure conditions




* hinted handoff

failure conditions



developing apps



“Most of these services only store and retrieve
data by primary key and do not require the
complex guerying and management
functionality offered by an RDBMS.”

developing apps



e “schema-less” * more flexibility, agility

developing apps



"app type " key Ll

Session User/Session ID Session Data

developing apps



"app type " key Ll

Advertising Campaign ID Ad Content

developing apps



" key value

Date Log File

developing apps



"app type " key Ll

Sensor Date, Date/Time Updates

developing apps



"app type " key value

User Data Login, Email, UUID User Attributes

developing apps



"app type " key value

Content Title, Integer, Etc. Text, JSON, XML

developing apps



future



Availability Partition
Tolerance

future






13 Jan 2011

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A comprehensive study of
Convergent and Commutative Replicated Data Types

Marc Shapiro, INRIA & LIP6, Paris, France
Nuno Prcgui(;a, CITI, Unzversidade Nova de Lisbos, Portugal
Carlos Baqucro. Universsdade do Minho, Portugal

Marek Zawirski, INRIA & UPMC, Paris. France

more data types




® counters * sets

* sever side structure and conflict resolution policy

more data types



there is little reason to forfeit C or A when the
system is not partitioned

strong consistency



e conditional writes ® consistent reads

strong consistency



other advanced features



other advanced features



* metadata * aggregation tasks ¢ search

other advanced features



* metadata * aggregation tasks ¢ search

other advanced features



other advanced features



In summary...



rapid evolutionary change



sighificant events



explosion of new systems



evolving into higher-order
systems



We’re hiring.
shanley@basho.com



