
WebRTC

Make the Web Fast, Google

SPDY, err... HTTP 2.0
what is it, how, why, and when?

HTTP 2.0 / SPDY goals

● Improve end-user perceived latency
● Address the "head of line blocking"
● Not require multiple connections
● Retain the semantics of HTTP/1.1

Usability Engineering - Jakob Nielsen, 1993

Usability Engineering 101

Delay User reaction

0 - 100 ms Instant

100 - 300 ms Feels sluggish

300 - 1000 ms Machine is working...

1 s+ Mental context switch

10 s+ I'll come back later...

@igrigorik

How Fast Are Websites Around The World? - Google Analytics Blog (April, 2012)

Desktop
Median: ~2.7s
Mean: ~6.9s

Mobile *
Median: ~4.8s
Mean: ~10.2s

* optimistic

@igrigorik

HTTP Archive - Trends (Sept, 2012)

Content Type Avg # of Requests Avg size
HTML 8 44 kB

Images 53 635 kB

Javascript 14 189 kB

CSS 5 35 kB

@igrigorik

The network will save us?
Right, right? Or maybe not...

Average US connection in Q1 2012: 6709 kbps

State of the Internet - Akamai - 2007-2012

Fiber-to-the-home services provided 18 ms round-trip latency on average, while cable-based services
averaged 26 ms, and DSL-based services averaged 43 ms. This compares to 2011 figures of 17 ms for
fiber, 28 ms for cable and 44 ms for DSL.

Measuring Broadband America - July 2012 - FCC @igrigorik

Worldwide: ~100ms
US: ~50~60ms

Average RTT to Google in 2012 is...

Bandwidth doesn't matter (much)
It's the latency, dammit!

PLT: latency vs. bandwidth

Average household in US is running on a 5 mbps+ connection. Ergo, average consumer in US would
not see an improved PLT by upgrading their connection.

Bandwidth doesn't matter (much) - Google @igrigorik

Mobile, oh Mobile...

Users of the Sprint 4G network can expect to experience average speeds of 3Mbps to 6Mbps
download and up to 1.5Mbps upload with an average latency of 150ms. On the Sprint 3G
network, users can expect to experience average speeds of 600Kbps - 1.4Mbps download and
350Kbps - 500Kbps upload with an average latency of 400ms.

Verizon FAQ

We stopped at 240ms!

(facepalm meme goes here...)

@igrigorik

● Improving bandwidth is easy... ****
○ Still lots of unlit fiber
○ 60% of new capacity through upgrades
○ "Just lay more cable" ...

● Improving latency is expensive... impossible?
○ Bounded by the speed of light
○ We're already within a small constant factor of the maximum
○ Lay shorter cables!

$80M / ms

Latency is the new Performance Bottleneck @igrigorik

Why is latency the problem?
Remember that HTTP thing... yeah...

● No pipelining: request queuing
● Pipelining*: response queuing

HTTP doesn't have multiplexing!

HOL

client server

● Head of Line blocking
○ It's a guessing game...
○ Should I wait, or should I pipeline?

@igrigorik

● 6 connections per host on Desktop
● 6 connections per host on Mobile (recent builds)

 So what, what's the big deal?

Open multiple TCP connections!!!

@igrigorik

TCP Congestion Control & Avoidance...

● TCP is designed to probe the network to figure out the available capacity
● TCP Slow Start - feature, not a bug

Exponential
growth

Packet Loss

@igrigorik

HTTP Archive says...
● 1098kb, 82 requests, ~30 hosts... ~14kb per request!
● Most HTTP traffic is composed of small, bursty, TCP flows

You are here

1-3 RTT's

Where we
want to be

@igrigorik

Update CWND from 3 to 10 segments, or ~14960 bytes

Default size on Linux 2.6.33+ - double check yours!

An Argument for Increasing TCP's initial Congestion window @igrigorik

Let's talk about SPDY
err... HTTP 2.0!

SPDY is HTTP 2.0... sort of...

● HTTPBis Working Group met in Vancouver in late July
● Adopted SPDY v2 as starting point for HTTP 2.0

HTTP 2.0 Charter
1. Done Call for Proposals for HTTP/2.0
2. Oct 2012 First WG draft of HTTP/2.0, based upon draft-mbelshe-httpbis-spdy-00
3. Apr 2014 Working Group Last call for HTTP/2.0
4. Nov 2014 Submit HTTP/2.0 to IESG for consideration as a Proposed Standard

http://lists.w3.org/Archives/Public/ietf-http-wg/2012JulSep/0971.html @igrigorik

 It’s important to understand that SPDY isn’t being adopted as

HTTP/2.0; rather, that it’s the starting point of our
discussion, to avoid a laborious start from scratch.

- Mark Nottingham (chair)

It is expected that HTTP/2.0 will...

● Substantially and measurably improve end-user perceived latency over HTTP/1.1 using TCP
● Address the "head of line blocking" problem in HTTP
● Not require multiple connections to a server to enable parallelism, thus improving its use of TCP

● Retain the semantics of HTTP/1.1, including (but not limited to)
○ HTTP methods
○ Status Codes
○ URIs
○ Header fields

● Clearly define how HTTP/2.0 interacts with HTTP/1.x
○ especially in intermediaries (both 2->1 and 1->2)

● Clearly identify any new extensibility points and policy for their appropriate use

Make things better

Build on HTTP 1.1

Be extensible

@igrigorik

A litany of problems.. and "workarounds"...

1. Concatenating files
○ JavaScript, CSS
○ Less modular, large bundles

2. Spriting images
○ What a pain...

3. Domain sharding
○ Congestion control who? 30+ parallel requests --- Yeehaw!!!

4. Resource inlining
○ TCP connections are expensive!

5. ...

All due to flaws
in HTTP 1.1

@igrigorik

So, what's a developer to do?
Fix HTTP 1.1! Use SPDY in the meantime...

 ... we’re not replacing all of HTTP — the methods, status codes, and most of
the headers you use today will be the same. Instead, we’re re-defining how
it gets used “on the wire” so it’s more efficient, and so that it is more
gentle to the Internet itself

- Mark Nottingham (chair)

Control Frame:
+----------------------------------+
|C| Version(15bits) | Type(16bits) |
+----------------------------------+
| Flags (8) | Length (24 bits) |
+----------------------------------+
| Data |
+----------------------------------+

Data Frame:
+----------------------------------+
|D| Stream-ID (31bits) |
+----------------------------------+
| Flags (8) | Length (24 bits) |
+----------------------------------+
| Data |
+----------------------------------+

● One TCP connection
● Request = Stream

● Streams are multiplexed
● Streams are prioritized

● Binary framing
● Length-prefixed

● Control frames
● Data frames

SPDY in a Nutshell

@igrigorik

+----------------------------------+
|1| 2 | 1 |
+----------------------------------+
| Flags (8) | Length (24 bits) |
+----------------------------------+
|X| Stream-ID (31bits) |
+----------------------------------+
|X|Associated-To-Stream-ID (31bits)|
+----------------------------------+
| Pri | Unused | |
+------------------ |
| Name/value header block |

● Server SID: even
● Client SID: odd

● Associated-To: push *
● Priority: higher, better

● Length prefixed headers

*** Much of this may (will, probably) change

SYN_STREAM

Control

SPDY v2 SYN_STREAM

Request
Priority

Request
ID

 +------------------------------------+
 | Number of Name/Value pairs (int16) |
 +------------------------------------+
 | Length of name (int16) |
 +------------------------------------+
 | Name (string) |
 ...

@igrigorik

● Full request & response multiplexing
● Mechanism for request prioritization

● Many small files? No problem
● Higher TCP window size
● More efficient use of server resources
● TCP Fast-retransmit for faster recovery

Anti-patterns
● Domain sharding

○ Now we need to unshard - doh!

SPDY in action

client server

...

@igrigorik

curl -vv -d'{"msg":"oh hai"}' http://www.igvita.com/api

> POST /api HTTP/1.1

> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0)
libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

> Host: www.igvita.com

> Accept: */*

> Content-Length: 16

> Content-Type: application/x-www-form-urlencoded

< HTTP/1.1 204

< Server: nginx/1.0.11

< Content-Type: text/html; charset=utf-8

< Via: HTTP/1.1 GWA

< Date: Thu, 20 Sep 2012 05:41:30 GMT

< Expires: Thu, 20 Sep 2012 05:41:30 GMT

< Cache-Control: max-age=0, no-cache

....

Speaking of HTTP Headers...

● Average request / response header
overhead: 800 bytes

● No compression for headers in HTTP!
● Huge overhead

● Solution: compress the headers!
○ gzip all the headers
○ header registry
○ connection-level vs. request-level

● Complication: intermediate proxies **

@igrigorik

Newsflash: we are already using "server push"
● Today, we call it "inlining"
● Inlining works for unique resources, bloats pages otherwise

SPDY Server Push

Premise: server can push resources to client
● Concern: but I don't want the data! Stop it!

○ Client can cancel SYN_STREAM if it doesn't the resource
● Resource goes into browsers cache (no client API)

Advanced use case: forward proxy (ala Amazon's Silk)
● Proxy has full knowledge of your cache, can intelligently push data to the client

@igrigorik

SPDY runs over TLS
● Philosophical reasons
● Political reasons
● Pragmatic + deployment reasons - Bing!

Encrypt all the things!!!

Observation: intermediate proxies get in the way
● Some do it intentionally, many unintentionally
● Ex: Antivirus / Packet Inspection / QoS / ...

SDHC / WebSocket: No TLS works.. in 80-90% of cases
● 10% of the time things fail for no discernable reason
● In practice, any large WS deployments run as WSS

@igrigorik

But isn't TLS slow?

CPU
 "On our production frontend machines, SSL/TLS accounts for

less than 1% of the CPU load, less than 10KB of memory per
connection and less than 2% of network overhead."

- Adam Langley (Google)

Latency
● TLS Next Protocol Negotiation

○ Protocol negotiation as part of TLS handshake
● TLS False Start

○ reduce the number of RTTS for full handshake from two to one
● TLS Fast Start

○ reduce the RTT to zero
● Session resume, ...

@igrigorik

● Chrome, since forever..
○ Chrome on Android + iOS

● Firefox 13+
● Next stable release of Opera

Server
● mod_spdy (Apache)
● nginx
● Jetty, Netty
● node-spdy
● ...

Who supports SPDY?

3rd parties
● Twitter
● Wordpress
● Facebook*

● Akamai
● Contendo
● F5 SPDY Gateway
● Strangeloop
● ...

All Google properties
● Search, GMail, Docs
● GAE + SSL users
● ...

@igrigorik

● Q: Do I need to modify my site to work with SPDY / HTTP 2.0?
● A: No. But you can optimize for it.

● Q: How do I optimize the code for my site or app?
● A: "Unshard", stop worrying about silly things (like spriting, etc).

● Q: Any server optimizations?
● A: Yes!

○ CWND = 10
○ Check your SSL certificate chain (length)
○ TLS resume, terminate SSL close and early
○ Disable slow start on idle

● Q: Sounds complicated, are there drop-in solutions?
● A: Yes! mod_spdy, nginx, GAE, ...

SPDY FAQ

@igrigorik

But wait, there is a gotcha!
there is always a gotcha...

● TCP: in-order, reliable delivery...
○ what if a packet is lost?

● ~1~2% packet loss rate
○ CWND's get chopped
○ Fast-retransmit helps, but..
○ SPDY stalls

● High RTT links are a problem too
○ Traffic shaping
○ ISP's remove dynamic window scaling

HTTP Head of line blocking.... TCP Head of line blocking

client server

...

Something to think about...

@igrigorik

Can haz SPDY?
Apache, nginx, Jetty, node.js, ...

Apache + SPDY

● mod_spdy is an open-source Apache module
● drop in support for SPDY

SDK @igrigorik

Installing mod_spdy in your Apache server

● Configure mod_proxy + mod_spdy: https://gist.github.com/3817065
○ Enable SPDY for any backend app-server
○ SPDY connection is terminated by Apache, and Apache speaks HTTP to your app server

$ sudo dpkg -i mod-spdy-*.deb
$ sudo apt-get -f install
$ sudo a2enmod spdy

$ sudo service apache2 restart

1

2 Profit

@igrigorik

Building nginx with SPDY support

 $ wget http://openssl.org/source/openssl-1.0.1c.tar.gz
 $ tar -xvf openssl-1.0.1c.tar.gz

 $ wget http://nginx.org/download/nginx-1.3.4.tar.gz
 $ tar xvfz nginx-1.3.4.tar.gz
 $ cd nginx-1.3.4

 $ wget http://nginx.org/patches/spdy/patch.spdy.txt
 $ patch -p0 < patch.spdy.txt

1

2

@igrigorik

 $./configure ... --with-openssl='/software/openssl/openssl-1.0.1c'
 $ make
 $ make install

3 Profit

http://blog.bubbleideas.com/2012/08/How-to-set-up-SPDY-on-nginx-for-your-rails-app-and-test-it.html

node.js + SPDY
var spdy = require('spdy'),
 fs = require('fs');

var options = {
 key: fs.readFileSync(__dirname + '/keys/spdy-key.pem'),
 cert: fs.readFileSync(__dirname + '/keys/spdy-cert.pem'),
 ca: fs.readFileSync(__dirname + '/keys/spdy-csr.pem')
};

var server = spdy.createServer(options, function(req, res) {
 res.writeHead(200);
 res.end('hello world!');
});

server.listen(443);

1

@igrigorik

2 Profit

https://github.com/indutny/node-spdy

Jetty + SPDY

1

@igrigorik http://www.smartjava.org/content/how-use-spdy-jetty

Copy X pages of maven XML configs

2 Add NPN jar to your classpath

3 Wrap HTTP requests in SPDY, or copy copius amounts of XML...

...

N Profit

I <3 Java :-)

Am I SPDY?
How do I know, how do I debug?

● Chrome SPDY indicator
● Firefox indicator
● Opera indicator

SPDY indicator(s)

@igrigorik

In Chrome console:

chrome://net-internals#spdy

@igrigorik Try it @ https://spdy.io/ - open the link, then head to net-internals & click on stream-id

Thanks! Questions?

HTTP 2.0 will ...
● Improve end-user perceived latency
● Address the "head of line blocking"
● Not require multiple connections
● Retain the semantics of HTTP/1.1

In the meantime, SPDY is here (FF, Opera, Chrome) ...
● Apache, nginx, node.js, Jetty, ...
● Drop in modules, no modifications needed to your site
● You can optimize your site for SPDY / HTTP 2.0

