O

SPDY, err... HTTP 2.0

what is it, how, why, and when?

Make the Web Fast, Google

Improve end-user perceived latency
Address the "head of line blocking"
Not require multiple connections
Retain the semantics of HTTP/1.1

HTTP 2.0 / SPDY goals

Usability Engineering 101

Delay User reaction
0-100 ms Instant

100 - 300 ms Feels sluggish

300 - 1000 ms Machine is working...
1 s+ Mental context switch
10 s+ I'll come back later...

(\ Usability Engineering - Jakob Nielsen, 1993 @igrigorik

Page Load Time
B Mean |l Median

Desktop
Desktop Median: ~2.7s
Mean: ~6.9s
Mobile MOblle *
Median: ~4.8s
0 2 4 6 8 10 Mean: ~10.2s

seconds

Page Load Time
5 B Mobile |l Desktop

J““hnhhh

-13 13-21 21-35 35-60 60 +
seconds

* optimistic

%

(\ How Fast Are Websites Around The World? - Google Analytics Blog (April, 2012)

@igrigorik

O

Total Transfer Size & Total Requests

1700

1200

700 -

Content Type
HTML
Images

Javascript
CSS

HTTP Archive - Trends (Sept, 2012)

8/15 1015 11/15

r130
F110
- 1059KB 1068KkB 1097kB 1105098k
882 _spoke 265KA 9c2ke. etk 1098 %;fe o8 M -.TT e ”
12115 1/15 2115 3/15 415 515 6/15 715 8/15 8/15
[l Total Transfer Size (kB)
[l Total Requests
Avg # of Requests Avg size
8 44 kB
53 635 kB
14 189 kB
5 35kB

@igrigorik

The network will save us?

Right, right? Or maybe not...

Connection Speed

8,000

6,000 e —

-0 %009 %0

a _ __®
£ 4,000 5—@—0C

2,000

UNITED STATES

O G @ @ 3 aiala2a304ql a2 a304al @2 a3 aaal
11 11 11

07 07 08 08 08 08 09 09 09 09 10 10 10 10 1 12

Average US connection in Q1 2012:

- Akamai - 2007-2012

¢ Cable ®DSL A Fiber
70

-
§ 60
§ 50 ® o o =]
.g 40 ¢ Fa) *
g ” 7 t \ | *+ % o 7
s 20 * A A A |
> A
@ 10
(=4
& < < & & & < < & & < < &
RO I R PO RO AR A
& N N A A 3 N)

Advertised Speed (Mbit/s)

Fiber-to-the-home services provided 18 ms round-trip latency on average, while cable-based services
averaged 26 ms, and DSL-based services averaged 43 ms. This compares to 2011 figures of 17 ms for
fiber, 28 ms for cable and 44 ms for DSL.

(\ Measuring Broadband America - July 2012 - FCC @igrigorik

Worldwide:
US: ~50~60ms

Average RTT to Google in 2012 is...

Bandwidth doesn't matter (much)

It's the latency, dammit!

PLT: latency vs. bandwidth

Latency per Bandwidth Page Load Time As RTT Decreases

PLT (ms)
Page Load Time (ms)

mlln
006 IIII

' L & < <&
R e

Bandwidth RTT

Average household in US is running on a 5 mbps+ connection. Ergo, average consumer in US would
not see an improved PLT by upgrading their connection.

(\ Bandwidth doesn't matter (much) - Google @igrigorik

Mobile, oh Mobile...

Users of the Sprint 4G network can expect to experience average speeds of 3Mbps to 6Mbps
download and up to 1.5Mbps upload with an average latency of 150ms. On the Sprint 3G
network, users can expect to experience average speeds of 600Kbps - 1.4Mbps download and
350Kbps - 500Kbps upload with an average latency of 400ms.

Page Load Time As RTT Decreases

500@"@"@"@"@@@@ & & & &£
'1,"‘0'090 060 0 QQQQ, 605.0 QY O

We stopped at 240ms!

(facepalm meme goes here...)

RTT

(\ Verizon FAQ @igrigorik

. Improving bandwidth is easy... ***%*

o Still lots of unlit fiber
o 60% of new capacity through upgrades
"Just lay more cable" ...

. Improving latency is expensive... impossible?

o Bounded by the speed of light
o We're already within a small constant factor of the maximum
o Lay shorter cables!

$80M / ms

i
N —

| 3

HIBERNIA

———

(\ Latency is the new Performance Bottleneck @igrigorik

Why is latency the problem?

Remember that HTTP thing... yeah...

HTTP doesn't have multiplexing!

no pipelining pipelining

client server client server

/ .

close —

close 4

AYAVAY,

e No pipelining: request queuing Head of Line blocking

o Pipelining*: response queuing o It'saguessing game...
o Should I wait, or should | pipeline?

(\ @igrigorik

Open multiple TCP connections!!!

| Top Desktop : |

Connections
name score PerfTiming per Hostname
() Chrome 20 — 12/16 yes 6
__|Firefox 14 — 13/16 yes 6
JIE8 - 7/16 no 6
(JIE9 — 12/16 yes 6
_|Opera 12 — 10/16 no 6
_JRockMelt 0.9 -+ 13/16 yes 6
|| Safari 5.1 — 12/16 no 6

e 6 connections per host on Desktop

| Top Mobile 3

name
|| Android 2.3 —

|_| Android 4 —

(I Blackberry 7 —

|_| Chrome Mobile 16 —
|_||IEMobile 9 —
|_liPhone 4 —
[_liPhone 5 —

|| Nokia 950 —

|_| Opera Mobile 12 —

e 6 connections per host on Mobile (recent builds)

So what, what's the big deal?

O

Connections

score PerfTiming per Hostname

8/16
13/16
11/16
13/16
11/16
10/16
10/16

11/16

no

yes
no

yes

yes

o A~ O O U O o

@igrigorik

TCP Congestion Control & Avoidance...

e TCPis designed to probe the network to figure out the available capacity
o TCP Slow Start - feature, not a bug

Packet Loss

Minimum Round Trips To Deliver N Segments
250 1
208 13
200 1285kB] packe
. I Ll drop
164 Exponential ,
£ 150 1214-kB growth " \
e 120 8
£ >
& g] /
“ 100 143 kB = 2 61 congesion
s
51 4]
50 71 kB 33 e sk ssars
21]
12 2
3 6 4
0 ——t—t— -~
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 tme (RTT)
Round trips 1 3 7 15 packers sent

(\ @igrigorik

HTTP Archive says...

e 1098kb, 82 requests, ~30 hosts... ~14kb per request!
e Most HTTP traffic is composed of small, bursty, TCP flows

250

Segments
—
w
o

8

50 -

You are here —» o

O

Minimum Round Trips To Deliver N Segments

208

164

120

78

33

21

3 4 5 6 7

Round trips

\ 1-3RTT's

8

9

10

11

<€+— Where we
want to be

@igrigorik

O

An Argument for Increasing TCP’s Initial Congestion
Window

Nandita Dukkipati Tiziana Refice Yuchung Cheng Jerry Chu Natalia Sutin
Amit Agarwal Tom Herbert Arvind Jain

Google Inc.
{nanditad, tiziana, ycheng, hkchu, nsutin, aagarwal, therbert, arvind}@google.com

ABSTRACT

TCP flows start with an initial congestion window of at most
three segments or about 4KB of data. Because most Web
transactions are short-lived. the initial congestion window is

for standard Ethernet MTUs (approximately 4KB) [5]. The
majority of connections on the Web are short-lived and fin-
ish before exiting the slow start phase, making TCP’s initial
congestion window (init_cwnd) a crucial parameter in deter-

initial

:a(; short
3;3 Update CWND from 3 to 10 segments, or ~14960 bytes "CP’s
cha per a
I)bf].ll)f
tior Default size on Linux 2.6.33+ - double check yours! width
larg ﬁbplsf)
appli-

et vad of

Of IICU“ULI\ UQlilivwilivii, xuuu.u.—uxxy viiiic \J.\.J. J.,’ Uariuivywiuivilr«,

AD]'.‘I‘! ‘nrnr‘nr‘f (pnp\ QTIA natnro nf nnn]irnfinnc \K."O chnn.'

Web pages. Popular Web browsers, including 1E8 (2], Fire-

An Argument for Increasing TCP's initial Congestion window

@igrigorik

Let's talk about SPDY

err... HTTP 2.0!

SPDY is HTTP 2.0... sort of...

e HTTPBis Working Group met in Vancouver in late July
e Adopted SPDY v2 as starting point for HTTP 2.0

HTTP 2.0 Charter

Done Call for Proposals for HTTP/2.0
Oct 2012 First WG draft of HTTP/2.0, based upon draft-mbelshe-httpbis-spdy-00

Apr 2014 Working Group Last call for HTTP/2.0
Nov 2014 Submit HTTP/2.0 to IESG for consideration as a Proposed Standard

N

(\ http://lists.w3.org/Archives/Public/ietf-http-wg/2012JulSep/0971.html @igrigorik

It's important to understand that SPDY isn’t being adopted as

HTTP/2.0; rather, that it’s the starting point of our
discussion, to avoid a laborious start from scratch.

- Mark Nottingham (chair)

It is expected that HTTP/2.0 will...

O

Substantially and measurably improve end-user perceived latency over HTTP/ Make thi
Address the "head of line blocking" problem in HTTP ngs better
Not require multiple connections to a server to enable parallelism, thus improving its use u.

Retain the semantics of HTTP/1.1, including (but not limited to)
o HTTP methods

o Status Codes

o URIs Build on HTTP 1.1
o Header fields

Clearly define how HTTP/2.0 interacts with HTTP/1.x
o especially in intermediaries (both 2->1 and 1->2)

Clearly identify any new extensibility points and policy for their appropriate use

Xteﬂs‘b\e

@igrigorik

A litany of problems.. and "workarounds"...

1. Concatenating files

o JavaScript, CSS
o Less modular, large bundles

2. Spriting images

o What a pain... All due to flaws
in HTTP 1.1

3. Domain sharding
o Congestion control who? 30+ parallel requests --- Yeehaw!!!

4. Resource inlining
o TCP connections are expensive!

(\ @igrigorik

So, what's a developer to do?

Fix HTTP 1.1! Use SPDY in the meantime...

... we're not replacing all of HTTP — the methods, status codes, and most of
the headers you use today will be the same. Instead, we're re-defining how
it gets used “on the wire” so it’s more efficient, and so that it is more
gentle to the Internet itself ...

- Mark Nottingham (chair)

SPDY in a Nutshell

O

One TCP connection
Request = Stream

Streams are multiplexed
Streams are prioritized

Binary framing
Length-prefixed

Control frames
Data frames

Control Frame:

+ __________________________________
| Flags (8) | Length (24 bits)

+ __________________________________
I Data

+ __________________________________
Data Frame:

+ __________________________________
|D| Stream-ID (31lbits)

+ __________________________________
| Flags (8) | Length (24 bits)

+ __________________________________
| Data

+ __________________________________

@igrigorik

SYN_STREAM

e Server SID: even
e C(ClientSID: odd

e Associated-To: push *
e Priority: higher, better

e Length prefixed headers

*** Much of this may (will, probably) change

O

Request
Priority

+ ____________________________________
| Number of Name/Value pairs (intl6)
+ ____________________________________
| Length of name (intlé6)

+ ____________________________________

| Name (string)

SPDY v2 SYN_STREAM
Vv \V

__________________________________ +

Control |1 2 1 I
e +

| Flags (8) | Length (24 bits) |
et e LT +

| X Stream-ID (31lbits) |

e L L P PP P PP PP PP PP PP P PP P PP +

Request

ID

@igrigorik

SPDY in action

O

client

server

e Full request & response multiplexing
e Mechanism for request prioritization

e Many small files? No problem

e Higher TCP window size

e More efficient use of server resources
e TCP Fast-retransmit for faster recovery

Anti-patterns

e Domain sharding
o Now we need to unshard - doh!

@igrigorik

Speaking of HTTP Headers...

curl -vv -d'{"msg":"oh hai"}' http://www.igvita.com/api

> POST /api HTTP/1.1

> User-Agent: curl/7.24.0 (x86_64-apple-darwinl2.0)
libcurl/7.24.0 OpenSSL/0.9.8r z1ib/1.2.5

> Host: www.igvita.com

> Accept: */*

> Content-Length: 16

> Content-Type: application/x-www-form-urlencoded

HTTP/1.1 204

Server: nginx/1.0.11

Content-Type: text/html; charset=utf-8
Via: HTTP/1.1 GWA

Date: Thu, 20 Sep 2012 05:41:30 GMT
Expires: Thu, 20 Sep 2012 05:41:30 GMT
Cache-Control: max-age=0, no-cache

AN AN AN AN AN AN AN

O

Average request / response header
overhead: 800 bytes

No compression for headers in HTTP!
Huge overhead

Solution: compress the headers!
o gzip all the headers
o header registry
o connection-level vs. request-level

Complication: intermediate proxies **

@igrigorik

SPDY Server Push

Premise: server can push resources to client

e Concern: but | don't want the data! Stop it!
o Client can cancel SYN_STREAM if it doesn't the resource
e Resource goes into browsers cache (no client API)

Newsflash: we are already using "server push"

e Today, we call it "inlining"
e Inlining works for unique resources, bloats pages otherwise

Advanced use case: forward proxy (ala Amazon's Silk)
e Proxy has full knowledge of your cache, can intelligently push data to the client

(\ @igrigorik

Encrypt all the things!!!

HTTP WS WS

O

SPDY runs over TLS

e Philosophical reasons
e Political reasons
« Pragmatic + deployment reasons - Bing!

Observation: intermediate proxies get in the way

e Some do itintentionally, many unintentionally
e Ex: Antivirus / Packet Inspection / QoS / ...

SDHC / WebSocket: No TLS works.. in 80-90% of cases

e 10% of the time things fail for no discernable reason
e In practice, any large WS deployments run as WSS

@igrigorik

Butisn't TLS slow?

HTTP WS WS

O

CPU

"On our production frontend machines, SSL/TLS accounts for
less than 1% of the CPU load, less than 10KB of memory per
connection and less than 2% of network overhead."

- Adam Langley (Google)

Latency

e TLS Next Protocol Negotiation
o Protocol negotiation as part of TLS handshake
e TLS False Start
o reduce the number of RTTS for full handshake from two to one
e TLS Fast Start
o reduce the RTT to zero
e Session resume, ...

@igrigorik

Who supports SPDY?

e Chrome, since forever..

o Chrome on Android +i0S =
e Firefox 13+
e Next stable release of Opera

Server 3rd parties
e mod_spdy (Apache) o Twitter
e nginx e Wordpress
e Jetty, Netty e Facebook*
e node-spdy
o .. Akamai
Contendo

Strangeloop

O

© 9141 PM

«aill Verizon 2

€& X hips//192.168.0.199

&

hello world!

All Google properties
e Search, GMail, Docs

e GAE + SSL users

F5 SPDY Gateway

@igrigorik

SPDY FAQ

Q: Do | need to modify my site to work with SPDY / HTTP 2.0?
A: No. But you can optimize for it.

e Q: How do | optimize the code for my site or app?
o A: "Unshard", stop worrying about silly things (like spriting, etc).

o Q: Any server optimizations?

e A:Yes!
o CWND =10
o Check your SSL certificate chain (length)
o TLS resume, terminate SSL close and early
o Disable slow start on idle

Q: Sounds complicated, are there drop-in solutions?
A: Yes! mod_spdy, nginx, GAE, ...

O

@igrigorik

But wait, there is a gotcha!

there is always a gotcha...

HTTP Headof tlineblocking.... TCP Head of line blocking

O

client

server

e TCP:in-order, reliable delivery...
o what if a packet is lost?

o« ~1~2% packet loss rate
o CWND's get chopped
o Fast-retransmit helps, but..
o SPDY stalls

o High RTT links are a problem too
o Traffic shaping
o ISP's remove dynamic window scaling

Something to think about...]

@igrigorik

Can haz SPDY?

Apache, nginx, Jetty, node.Js, ...

Apache + SPDY
@ mod-spdy

Apache SPDY module

Project Home | Wiki Issues Source

Summary People

Project Information

mod_spdy
I+1| +108 Recommend this on Google
mod_spdy is a SPDY module for Apache 2.2 that allows your web server to take advantage of SPDY features like stream multiplexing and

Starred by 259 users header compression. This is the open source home for mod_spdy. You can also download Debian and RPM packages or compile mod-spdy from
Project feeds source.

Code license

e Potential speedup from mod_spdy

Labels
apache, SPDY mod_spdy World Flags Demo
4% Members HTTPS

bmcqu...@google.com,
mdste...@google.com,
Is...@google.com

3 committers

Workd Flagy med_spdy Demo World Flags mod_spdy

([B-0d]

<
=

[[RCRE T
wearn

Hetaronn

Featured

sgrnaname
digtarons

c
-
o

L BE 11
IR L LRS-}
M L

wiine

" Wiki pages
ConfigOptions

GettingStarted
Show all »

BENRIIDNDLBAOREE

LU ULl B L

amn
NEI NI EERHACIRNRRON
el

"o
T'anaviing
iNlnranRzIng
LRI M

Links

Groups
mod-spdy-discuss

e mod_spdy is an open-source Apache module
e drop insupport for SPDY

(‘ 20K @igrigorik

Installing mod_spdy in your Apache server

sudo dpkg -1 mod-spdy-*.deb
sudo apt-get -f install
sudo a2enmod spdy

®

A A A A

sudo service apache2 restart

@ Profit

e Configure mod_proxy + mod_spdy: https://gist.github.com/3817065
o Enable SPDY for any backend app-server
o SPDY connection is terminated by Apache, and Apache speaks HTTP to your app server

(\ @igrigorik

Building nginx with SPDY support

<::> $ wget http://openssl.org/source/openssl-1.0.1c.tar.gz
$ tar -xvf openssl-1.0.1c.tar.gz

$ wget http://nginx.org/download/nginx-1.3.4.tar.gz
$ tar xvfz nginx-1.3.4.tar.gz
$ cd nginx-1.3.4
$ wget http://nginx.org/patches/spdy/patch.spdy.txt
$ patch -po < patch.spdy.txt
<::> $./configure ... --with-openssl='/software/openssl/openssl-1.0.1c"'
$ make
$ make install

@ Profit

(\ http://blog.bubbleideas.com/2012/08/How-to-set-up-SPDY-on-nginx-for-your-rails-app-and-test-it.ntml @igrigorik

node.js + SPDY
<::> var spdy = require('spdy'),

fs = require('fs');

var options = {
key: fs.readFileSync(__dirname + '/keys/spdy-key.pem'),
cert: fs.readFileSync(__dirname + '/keys/spdy-cert.pem'),
ca: fs.readFileSync(__dirname + '/keys/spdy-csr.pem')

1

var server = spdy.createServer(options, function(req, res) {
res.writeHead(200);
res.end('hello world!");

DK

server.listen(443);

@ Profit

(\ https://github.com/indutny/node-spdy @igrigorik

Jetty + SPDY 1<3Java :-)

@ Copy X pages of maven XML configs
@ Add NPN jar to your classpath

@ Wrap HTTP requests in SPDY, or copy copius amounts of XML...

(n) profi

(\ http://www.smartjava.org/content/how-use-spdy-jetty @igrigorik

Am | SPDY?

How do | know, how do | debug?

SPDY indicator(s)

e Chrome SPDY indicator
e Firefox indicator
e Opera indicator

In Chrome console:

» window.chrome. loadTimes()

¥ Object

commitLoadTime: 1350252136.934823
finishDocumentLoadTime: 1350252137.397209
finishLoadTime: 1350252137.529396
firstPaintAfterLoadTime: 1350252137.611959
firstPaintTime: 1350252137.523084
navigationType: "Other"
npnNegotiatedProtocol: "spdy/3"
requestTime: @
startLoadTime: 1350252135.83449
wasAlternateProtocolAvailable: false
|wasFetchedViaSpdy: true
wasNpnNegotiated: true

» proto__: Object

O

800 ¥ Twitter

&~ &
twittery®

53 Twitter, Inc. [US] https://twitter.co!

New to Twitte

*§ Google IT‘ Py

€ *J google.com https://www.google.coH

)~ |28~ Google

=y 8

+You Search Images Maps Youlube News Gmail Documents Calendar

* v! (-" v Search with Google

Language: English

@igrigorik

chrome://net-internals#spdy

Capturing network events (185) B3 23

Capture
Export
Import

Proxy
Events
Timeline
DNS
Sockets
SPDY

HTTP Pipelining
HTTP Cache
Tests

HSTS
Prerender

SPDY Status

SPDY Enabled: true

Use Alternate Protocol: true
Force SPDY Always: false
Force SPDY Over SSL.: true

SPDY sessions

View live SPDY sessions

Next Protocols: http/1.1,spdy/2,spdy/3

Host

Proxy

Protocol
Negotiatied

Active
streams

Unclaimed
pushed

Initiated

Pushed

Pushed
and
claimed

0.docs.google.com:443

direct://

305272

spdy/3

1

100

80

clients4.google.com:443
apis.google.com:443
cbks0.google.com:443
clients1.google.com:443
clients2.google.com:443
docs.google.com:443
drive.google.com:443 encrypted-
tbn0.gstatic.com:443 encrypted-
tbn1.gstatic.com:443 encrypted-
tbn2.gstatic.com:443 encrypted-
tbn3.gstatic.com:443
khms0.google.com:443
khms1.google.com:443 maps-api-

ssl.google.com:443

direct://

280013

spdy/3

100

3471

(\ Try it @ https://spdy.io/ - open the link, then head to net-internals & click on stream-id

@igrigorik

HTTP 2.0 will ...

e Improve end-user perceived latency
e Address the "head of line blocking"
e Not require multiple connections

e Retain the semantics of HTTP/1.1

In the meantime, SPDY is here (FF, Opera, Chrome) ...

e Apache, nginx, node.js, Jetty, ...
e Drop in modules, no modifications needed to your site
e You can optimize your site for SPDY / HTTP 2.0

Thanks! Questions?

