

Most programs are outside the bounds of and single process we write in any single FP language

What is Datomic?

- A new database
- A sound model of information, with time
- Provides database as a value to applications
- Bring declarative programming to applications
- Focus on reducing complexity

Not going to do a full rationalization or overview Focus on information important for Datomic, not necessarily for all use of dbs/stores

DB Complexity

- Stateful
- Same query, different results
 - no basis
- Over there
- 'Update' poorly defined
 - Places

Inherent complexity in state

Update

- What does update mean?
- Does the new replace the old?
- Granularity? new ____ replace the old ____
- Visibility?

Granularity and replacement the big issues

Manifestations

- Wrong programs
- Scaling problems
- Round-trip fears
- Fear of overloading server
- Coupling, e.g. questions with reporting

read committed vs repeatable, serializable

Consistency and Scale

- What's possible?
- Distributed redundancy and consistency?
- Elasticity
- Inconsistency huge source of complexity

dynamo and bigtable

Information and Time

- Old-school memory and records
- The kind you remember ... and keep
- Auditing and more

Perception and Reaction

- No polling
- Consistent

Coming to Terms

Value

An <u>immutable</u>
 magnitude, quantity,
 number... or immutable
 composite thereof

Identity

 A putative entity we associate with a series of causally related values (states) over time

State

 Value of an identity at a moment in time

Time

 Relative before/after ordering of causal values

Implementing Values

- Persistent data structures
- Trees
- Structural sharing

We should recognize - same problems as OO Conflates identity and value, collapses time

This is what we want - transactions are functions of db values queries as well

what's makes up a database? cache over DB access, disk locality was important

The Choices

- Coordination
 - how much, and where?
 - process requires it
 - perception shouldn't
- Immutability
 - sine qua non

coordinate up front or later immutability advantages with eventually consistent systems

Approach

- Move to information model
- Split process and perception
- Immutable basis in storage
- Novelty in memory

Information

- Inform
 - 'to convey knowledge via facts'
 - 'give shape to (the mind)'
- Information
 - the facts

Facts

- Fact 'an event or thing known to have happened or existed'
 - From: factum 'something done'
 - Must include time
- Remove structure (a la RDF)
- Atomic Datom
 - Entity/Attribute/Value/Transaction(time)

don't get more flexibility by trading tables for documents factum – "something done"

Database State

- The database as an expanding value
 - An accretion of facts
 - The past doesn't change immutable
- Process requires new space
- Fundamental move away from places

What is the state - snapshot of a referential model?

Accretion

- Root per transaction doesn't work
- Latest values include past as well
 - The past is sub-range
- Important for information model

can we just do shared structure from before on disk?

Process

- Reified
- Primitive representation of novelty
 - Assertions and retractions of facts
 - Minimal
- Other transformations expand into those

Important to accretion that novelty representation is minimal

Deconstruction

Process

• Perception/Reaction

Transactions

Query

Indexing

Indexes

• 0

• |

State

- Must be organized to support query
- Sorted set of facts
- Maintaining sort live in storage bad
 - BigTable mem + storage merge
 - occasional merge into storage
 - persistent trees

Databases are about leverage

Indexing

- Maintaining sort live in storage bad
- BigTable et al:
 - Accumulate novelty in memory
 - Current view: mem + storage merge
 - Occasional integrate mem into storage
 Releases memory

Transactions and Indexing

Just a merge join. Any coordination required? Contention? How does live index get updated? Live vs periodic now separate decision

Components

- Transactor
- Peers
 - Your app servers, analytics machines etc
- Redundant storage service

Physical architecture

But, storage now remote, slow? No - cache everywhere

Transactor

- Accepts transactions
 - Expands, applies, logs, broadcasts
- Periodic indexing, in background
- Indexing creates garbage
 - Storage GC

Peer Servers

- Peers directly access storage service
- Have own query engine
- Have live mem index and merging
- Two-tier cache
 - Datoms w/object values (on heap)
 - Segments (memcached)

Consistency and Scale

- Process/writes go through transactor
 - traditional server scaling/availability
- Immutability supports consistent reads
 - without transactions
- Query scales with peers
 - Elastic/dynamic e.g. auto-scaling

consistency as in db satisfies consistency predicate loopholes 7 and 10?

Memory Index

- Persistent sorted set
- Large internal nodes
- Pluggable comparators
- 2 sorts always maintained
 - EAVT, AEVT
- plus AVET, VAET

Storage

- Log of tx asserts/retracts (in tree)
- Various covering indexes (trees)
- Storage service/server requirements
 - Data segment values (K->V)
 - atoms (consistent read)
 - pods (conditional put)

Value can be lazily loaded, since source immutable

Datomic on Riak + ZooKeeper

- Riak
 redundant, distributed, highly available
 durable
 eventually consistent
- ZooKeeper redundant, durable, consistent (ordered ops + CAS)

pointer swap mentioned by Eric Brewer this morning

Riak Usage

- Everything put into Riak is immutable
- N=3,W=2, DW=2
- R=I, not-found-ok = false
 'first found' semantics
- There or not no vector clocks, siblings etc
- No speculative lookup

What notion of consistency? Application-level predicate

Stable Bases

- Same query, same results
- db permalinks!
 - communicable, recoverable
- Multiple conversations about same value

Value of values

DB Values

- Time travel
 - db.as0f past
 - db.since windowed
 - db.with(tx) speculative
- dbs are arguments to query, not implicit
 - mock with datom-shaped data:

```
[[:fred :likes "Pizza"]
[:sally :likes "Ice cream"]]
```

DB Simplicity Benefits

- Epochal state
 - Coordination only for process
- Transactions well defined
 - Functional accretion
- Freedom to relocate/scale storage, query
- Extensive caching
- Process events

The Database as a Value

- Dramatically less complex
- More powerful
- More scalable
- Better information model

