
QCon SF - November 2012 - Owen Barnes

A new framework for a new web

SocketStream

About me

Full stack web developer
Used RoR commercially for 5 years

Worked at AOL for 4 years
(online advertising division)

Helping companies get the most
of the the real time web and Node.js

SocketStream

www.socketstream.org

http://www.socketstream.org
http://www.socketstream.org

Is it possible to make a web app where
all the data flowed over the websocket?

?

2 years later...

1. Static

The next phase of the web is Realtime

2. Dynamic 3. Realtime

Expectations change over time

Mobile apps rarely need refreshing

Nor should web apps

Expectations change over time

a web framework

1. Dedicated to building single-page apps

2. All application data flows over the websocket

SocketStream

Why bother with a framework?

Rails became so popular because it
eliminated pointless decisions and gave
developers to freedom to create

Out of the box Node gives you:

var http = require('http');

http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/');

a request and response object

http://127.0.0.1:1337/'
http://127.0.0.1:1337/'

Client-side Templates Live CSS/HTML Reload

Sessions Asset Packing

Connection HandlingHTTP/Auth Integration

CDN Support

Code Organization

Essentials for all realtime apps

Code Pre-processors

Mobile ClientsTesting PushState Routing

Features

0.3

Optional modules for all tastes

Stylus
and many more...

Jade

Modular Transport Layer

SockJS

Change websocket transport without changing your app

Engine.IO

Full Node.js Compatibility

Embraces Node.js, doesn’t try to abstract it away

Use it alongside Express, EveryAuth, Mongoose and more

Uses Connect Session Store - share sessions with Express

Start your app with node app.js not socketstream start

Define Multiple Single-page Clients

Serve custom views, CSS and JS code to
different devices without duplicating files

Client Framework Agnostic

Ember.js

Client-side Templates

{ }Great support for any client-side templates

Modules for Hogan, Jade, CoffeeKup and more

Templates can be pre-compiled server-side

Combine multiple template types together

Client-side Modules

Use ‘require’ in the browser

Share code between client/server

Modules work like they do in Node.js

Use Node.js system libs in the browser

The best way to organise large projects

Designed for modern apps

Easily use Webworkers

Support for Push State routing

Where are we today?

Progress so far

✓ Stable 0.3 version with production users

✓ Over 2200 Github watchers

✓ Active Google Groups / IRC community

✓ Feature complete (core)

- Documentation / Website

- Demo Apps

x Screencasts

Demos

0.3

https://github.com/socketstream/socketstream

0.3 available today!

https://github.com/socketstream/socketstream
https://github.com/socketstream/socketstream

0.4

Preview

(In active development - subject to change)

✓ High performance

✓ Minimal bandwidth

✓ Reliability at scale

✓ Easy to get started

✓ Transport agnostic

✓ Minimal client-side code

✓ Excellent mobile compatibility

Goals

Instant productivity

Full
control
of your

stack

Meteor

Derby

SocketStream

‘Roll Your Own’

Socket.IO

Frameworks

Major trend

Small modulesLarge frameworks

SocketStream would be a community
of developers dedicated to making realtime

apps by combining existing modules

In a ideal world

We write minimal software
to integrate the best modules

& obey standard Node conventions

but until then

Node Streams to the rescue!

search for “LXJS streams”

1. Transmit data incrementally

2. A standard API

Benefits of Streams

(blessed by the brightest minds
in the Node community)

https://github.com/substack/stream-handbook

Also new in 0.4

✓ Re-written everything in vanilla JS

✓ Bundled with Engine.io by default

✓ Improved Request Responder API

✓ Much better logging (silent by default)

✓ Improved asset packing, with GZip support

✓ Improved architecture and design

So what will we NOT do?

Not designed for SEO

SocketStream apps typically:

• require a login to pass the first page
• contain very little indexable content
• are more like iPad apps than websites

The priority is a clean, efficient system
for building modern realtime apps

How best to integrate
models into SocketStream

?

/app/models

DON’T DO IT!

Models are tricky to get right...

Ember.js

n client-side
frameworks

n persistent
stores

WEBSOCKET
TRANSPORT

...and they’re not always needed

RESTful API Streaming API

Introducing Streamable Services
An API to handle messages and deliver code

One module. Multiple interfaces.

HTTP Websocket Command Line
(Testing)

Process Request

Services Overview

Three responders bundled: pubsub, rpc, liveReload

Direct access to the websocket

Provide custom client/server code

Automatically multiplexed over the WebSocket

Allow different ideas around models to thrive

Perfect for high-speed gaming, presence and more

ss-angular and ss-backbone already available!

0.4

Demo

Play with the code yourself
github.com/socketstream/socketstream-0.4

We have the audience,
the interest, and the community

If you’re interested in building
realtime apps at scale, get in touch

owen@socketstream.org

mailto:owen@socketstream.org
mailto:owen@socketstream.org

And finally...

Big thanks to Guillermo Rauch (Socket.IO), TJ Holowaychuk (Stylus, Jade),
Substack (Browserify), Mihai Bazon (UglifyJS), Isaac Schlueter (NPM),

Salvatore Sanfilippo (Redis) and Ryan Dahl (creator of Node.js)

Q&A

@socketstream @temporalwave

Thank you!

@socketstream @temporalwave

