
(un)Common Sense

mike@youtube



Briefly

●goals / disclaimer*
●broad strokes
●scalability
●efficiency
●productivity



YouTube then...(big)

●python - everywhere
●two-tier system
○ fast, sequential requests

●open source tools omnipresent



YouTube now...(bigger)

●python web app
●many components
○~3 languages

●RPCs galore
○slower, parallel requests
○tiers not tears



Scalable systems...

●solve the problem at hand
●product of evolution
●start simple
○the complexity comes for free



Remove the bottlenecks.



Scalable techniques...

●divide and conquer
●approximate correctness
●expert knob twiddling (cheat!)
○consistency, durability...

● jitter / entropy injection



Scalable components...

●well defined boundaries
○ inputs / outputs
○dependencies

●freedom and autonomy
○ leverage local optimizations



Scalable development?

●communication through 
code/data/schema

●partition the problems
●RPC as a means of sanity



Efficiency

●uncorrelated with scalability
● focus on algorithms first
● learn to measure
○use representative samples



Efficient Python?

One simple mantra…



All magic 
comes with 

a price.



Efficient Python

●pick your battles
●avoid ORMs
●use OOP with restraint
●eschew magic



Efficient Ideas

● leverage other languages
○C++, Go

●simple network protocols
○ !HTTP

●sensible encodings
○self-describing vs schema



Efficient Ideas

●don't be too clever*



Productivity

●philosophy vs doctrine
●more conventions
○ less documentation*

●more effective collaboration
●more diffusion of responsibility



Productivity

●knobs and hammers
● leave manholes
●don't forget unix ideals



Questions?

 


