
MongoDB large scale
data-centric architectures

QConSF 2012
Kenny Gorman

Founder, ObjectRocket

@objectrocket @kennygorman

MongoDB at scale

● Designing for scale

● Techniques to ease pain

● Things to avoid

What is scale?

● Scale; massive adoption/usage
● Scale; a very big, busy, or tricky system.
● Scale; I just want to sleep.
● Scale; The docs just seem silly now.
● Scale; Am I the only one with this problem?

Vintage playbook

● No joins, foreign keys, triggers, stored procs
● De-normalize until it hurts
● Split vertically, then horizontally.

○ Conventional wisdom. eBay an early pioneer.
● Many DBA's, Sysadmin's, storage engineers, etc
● Huge hardwarez
● You have your own datacenter or colo-location
● You realize your ORM has been screwing you
● You better have some clever folks on staff, shit gets

weird at scale

Example:

while True:
try:
add_column()
exit()

exception e:
print ("%s; crud") % e

Vintage scaling playbook

Scaling today

● Many persistence store options
● Horizontal scalability is expected
● Cloud based architectures prevalent

○ Hardware and data centers are abstracted from
developers

● Focus on rapid development
● Mostly developers, maybe some devops
● Expectations that stuff just works
● Technologies are less mature, less tunables

Enter MongoDB

● Document based NoSQL database
● JSON/BSON (www.bson.org)
● Developers dream
● OPS nightmare (for now)
● Schema-less
● Built in horizontal scaling framework
● Built in replication
● ~65% deployments in the cloud

MongoDB challenges

● The lock scope

● Visibility

● Schema

● When bad things happen

A MongoDB document
{
 _id : ObjectId("4e77bb3b8a3e000000004f7a"),
 when : Date("2011-09-19T02:10:11.3Z",
 author : "alex",
 title : "No Free Lunch",
 text : "This is the text of the post",
 tags : ["business", "ramblings"],
 votes : 5,
 voters : ["jane", "joe", "spencer"],
 }

MongoDB keys for success at scale

● Design Matters!

Design for scale; macro level

● Keep it simple
● Break up workloads
● Tune your workloads
● NoORM; dump it
● Shard early
● Replicate
● Load test pre-production!

Your success is only as good as the thing you
do a million times a second

Design for scale; specifics

● Embedded vs not

● Indexing
○ The right amount
○ Covered

● Atomic operations

● Use profiler and explain()

Example; document embedding
// yes, guaranteed 1 i/o
{userid: 100, post_id: 10, comments:["comment1","comment2"..]}
db.blog.find({"userid":100}).explain()
{ ..., "nscannedObjects" : 1, ... }

// no
{userid: 100, post_id: 10, comment: "hi, this is kewl"}
{userid: 100, post_id: 10, comment: "thats what you think"}
{userid: 100, post_id: 10, comment: "I am thirsty"}
db.blog.find({"userid":100}).explain()
{ ..., "nscannedObjects" : 3, ... }

Example; covered Indexes
mongos> db.foo.find({"foo":1},{_id:0,"foo":1}).explain()
{

"cursor" : "BtreeCursor foo_-1", "isMultiKey" : false,
"n" : 1,
"nscannedObjects" : 1, "nscanned" : 1,
"nscannedObjectsAllPlans" : 1,
"nscannedAllPlans" : 1, "scanAndOrder" : false,
"indexOnly" : true,
"nYields" : 0, "nChunkSkips" : 0,
"millis" : 0, "indexBounds" : { "foo" : [[1,1]]},
"millis" : 0

}

Design for scale

● Shard keys

● Tradeoffs

● Local vs Scattered

● Figure out at design time

Example; Shard Keys

● Tuning for writes
● Queries are scattered

{
_id: ObjectId("4e77bb3b8a3e000000004f7a"),
skey: md5(userid+date), // shard key
payload: {...}

}

Example; Shard Keys

● Tuning for reads
○ Localized queries
○ Writes reasonably distributed

{
userid: 999, // shard key
post: {"userid":23343,

"capt":"hey checkout my pic",
"url":"http://www.lolcats.com"
}

}

Design for scale; architecture

● Engage all processors
○ Single writer lock
○ Concurrency

● Replication
○ Understand elections, and fault zones
○ Understand the 'shell game', rebuilding slaves

■ Fragmentation
○ Client connections, getLastError

● Sharding
○ Pick good keys or die
○ Get enough I/O

Design for scale; architecture

● I/O
○ You need it
○ Conventional wisdom is wrong
○ Maybe they don't have big databases?

Example; 'shell game'

Slave APP

Master

Slave

Perform work on
slave then
stepDown() back to
primary

Example; network partition

A B

?????

"replSet can't see a majority, will not try to elect self"

Example; write concern
// ensure data is in local journal

BasicDBObject doc = new BasicDBObject();
doc.put("payload","foo");
coll.insert(doc, WriteConcern.SAFE);

Random parting tips

● Monitor elections, and who is primary
● Write scripts to kill sessions > Nms or based

on your architecture
● Automate or die
● Tools

○ Mongostat
○ Historical performance

Gotchas, risks, shit that will make
you nuts

● Logical schema corruption
● That lock!
● Not enough I/O
● Engaging all processors
● Visibility
● Not understanding how MongoDB works
● FUD

Contact

@kennygorman
@objectrocket
kgorman@objectrocket.com

https://www.objectrocket.com
https://github.com/objectrocket/rocketstat

