
Architecting for Continuous Delivery

Russ Barnett, Chief Architect
John Esser, Director of Engineering Productivity

Ancestry.com

Background

2

Growth at Ancestry.com

• Subscribers have doubled in the past 3 years
– (~1M to > 2M)

• Page views have doubled in the past 3 years
– (~25M/day to ~50M/day)

• Development head count has tripled
– (100 to 300)

• Feature throughput has dramatically increased

3

Continuous Delivery

is consistently and reliably

releasing business value increments

fast

through automated build, test, configuration and
deployment.

What is the value of going fast?

A LOT!

Evolution to Continuous Delivery

Agile
Boot Up
(Scrum)

Enterprise
Agile
Framework

Agile
Architecture
Standards

Continuous
Delivery
Adoption

Future –
“Agile v2”

Two year period (2010 – present)

Typical Impediments to Continuous Delivery

• Cultural

• Technical practices

• Quality ownership

• Infrastructure

• Architectural

Limiting Factors

• Pipeline serialized at integration

– Errors that occurred in this stage
stalled the pipeline

• Stalls in integration induced
additional problems

• Increasing frequency of stalls

– As number of development
teams grew, frequency of stalls
increased

7

Integration

Source Control

Build

Unit Testing

System Testing

Deployment

Team A Team B Team C

error

causes

stall

Everything was coupled!

(Aka, large batch size)

(It became known as the “big blob!”)

8

9

Little’s Law

𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒 =
𝑄𝑢𝑒𝑢𝑒 𝑠𝑖𝑧𝑒

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒

𝑄𝑢𝑒𝑢𝑒 𝑠𝑖𝑧𝑒 ∝ 𝐵𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

We can reduce wait time (cycle time)
by reducing batch size

without changing demand or capacity.

10

Problems with Large Batches

• Increases cycle time

• Increases variability non-linearly as 2n

• Increases risk

• Reduces efficiency

• Limited by its worst element.

from Principles of Product Development Flow, Don Reinertsen

11

Answer?

Utilize small batches.

12

Fluidity Principle

Loose coupling
between product systems

enables small batches

“Once a product developer realizes that small batches are
desirable, they start adopting product architectures that permit
work to flow in small, decoupled batches.”

from Principles of Product Development Flow, Don Reinertsen

13

Fluidity Principle

Loose coupling
between product systems

enables small batches

“Once a product developer realizes that small batches are
desirable, they start adopting product architectures that permit
work to flow in small, decoupled batches.”

from Principles of Product Development Flow, Don Reinertsen

14

Creating an Architecture for Agility

15

Architectural Impediments

• Cross-Component Coupling

– Creates groups of systems that must be deployed together

• Insufficient Rollback Capability

– Causes teams to resort to cascading rollback

• Poor Testing and Monitoring

– Requires a long testing period

– Lengthens feedback cycle

– Allows quality problems to escape to and affect customers

16

Architectural Methods for Removing Impediments

• Partition into small single-responsibility components
 “There should only be one reason for a [component] to change”

 - Robert Martin

• Decouple deployment of components

– Separately deploy components

– Remove order dependent deployment

• Support Independent Rollback

– Enforce strict backward and forward compatibility

17

Backward and Forward Compatibility

Client

Version 1

Service

Version 1

Service

Version 2

Client

Version 2

Deployment

Rollback

Deployment

Rollback

Backward
Compatibility

Backward
Compatibility

Forward
Compatibility

Forward
Compatibility

• Server Backward Compatibility

– Newer servers work with clients
written to old interface

• Server Forward Compatibility

– Existing servers work with clients
written to newer interface

– Supports early client deployment

• Client Backward Compatibility

– Newer clients work with servers
that implement old interface

– Supports server rollback

• Client Forward Compatibility

– Old clients work with servers that
implement new interface

Enforcing Decoupled Components

• Implementing standards is insufficient

– Independent deployment forces some decoupling

– High rate of deployment issues indicate remaining coupling

• Improve integration testing

– Verify backward and forward compatibility

– Identify breaking changes quickly

– Make writing integration tests easier

19

Improving Interface Verification

20

Server

Client

In Process

Client/Server

Server

Client
• Remember when you could run your

entire application in one process?

• How do we get better interface
verification with services?

In Process

Thrift

SOAP/WSDL

REST

V
e
ri

fi
a
b
le

Decoupled

Google
Protocol Buffers

Interface Verification using Proxies and Stubs

21

Stub

Proxy

Client

Server

Client/Server
with

Proxy/Stub

• Verifies interface at compile time

• Isolates code from versioning issues

• Easier to provide mock implementations

• Can test backward and forward
compatibility

Managing a Complex Network of Services

• Ancestry Scale

– About 40 different teams

– Over 300 separate application or service systems

– Stack is 5+ levels deep

• Historical Diagnostics

– Presented a client centric or top down view

– Insufficient for identifying problems in a network of services

• Solution: Deep Status Check

– Components provide dynamic status information for each
client and dependency

– Report traverses dependencies up to a given depth

 22

Ancestry Deep Status Check

23

Service

1

Service

A

Service

C

Service

B

App 2

Service

2

GetStatus
Monitor App 1

Unidentified
Client

Unregistered
Client

Connection Error

Database
File

System

Level 1

Level 2

Level 3

Level 4

< 2 s

95%

< 4 s

fail
99.9%

SLA

Service Level Agreements

• Understand Business Expectations

– Each application and service establishes a contract with each
client specifying the expected performance characteristics

24

• Methodology

– Use percentile
buckets rather than
an average

– Performance is a
component of
availability

Verify Client Identity
Check Circuit Breaker

Track Each Incoming Request
Report Compliance

Incoming Requests

Check Circuit Breaker
Provide Fallback Mechanism
Track Each Outgoing Request

Report Compliance

Outgoing Requests

Service Level Agreement System

• Compare incoming and outgoing SLA compliance

Service

Conclusion

• Architecture affects agility and continuous delivery
capability as much or more than other factors.

• Process and tool improvements alone are insufficient.

• Good architecture techniques enable effective
continuous delivery at large scale.

– Partition to single-responsibility components.

– Decouple deployment

– Support independent rollback

– Improve testing and monitoring infrastructure

26

• Questions?

 Contact info:

 jesser@ancestry.com.

 rbarnett@ancestry.com.

Ancestry is hiring in San Francisco and Utah

27

