
Micro Services
Java, the Unix way

Thursday, 8 November 12

@boicy http://bovon.org jalewis@thoughtworks.com

Principal Consultant

Senior Engineer

story teller

Thursday, 8 November 12

http://bovon.org
http://bovon.org
http://bovon.org
http://bovon.org

WHAT I DID LAST SUMMER
Or how we designed and built a Resource Oriented,
Event Driven System out of applications about 1000
lines long…

Thursday, 8 November 12

In the beginning…

• There was a new product being developed by
an organisation in London

• The organisation had gathered their list of
high level requirements

• And they asked ThoughtWorks if we could
help them design and build it…

Thursday, 8 November 12

So we took a look at their
requirements

• Me and my mates at ThoughtWorks

• Worked out to be about a lot of points worth
of User Stories

Thursday, 8 November 12

0

Half way
through

Complete

opened
the box

Cows
come
home

hell
freezes pigs fly

Heat
death of

the
Universe

End day
1

Thursday, 8 November 12

Tip 1

Divide and conquer

break	
 down	
 complex	
 problems	
 into	

smaller	
 chunks	
 that	
 can	
 be	
 solved	

individually

Thursday, 8 November 12

Thursday, 8 November 12

Thursday, 8 November 12

heavy industrial

Thursday, 8 November 12

commercial

Thursday, 8 November 12

light residential

Thursday, 8 November 12

13

Each small box represents a capability,

composed of one or more services

Thursday, 8 November 12

And there were some, umm, interesting
non-functional requirements too

Thursday, 8 November 12

15

1000TPS, 99th percentile latency of < 2
seconds

Thursday, 8 November 12

16

Support a user base of 100 million active
customers

Thursday, 8 November 12

17

Support bulk loads of 30 – 90 million records
nightly and keep them for six months
(16,200,000,000 records)

Thursday, 8 November 12

18

Did I mention PCI Level 1?

Thursday, 8 November 12

Finally, this is a product build.

So it needed to be modular /
<cough> “infinitely configurable”

Thursday, 8 November 12

The product need to to be…
• Performant

– fairly high throughput both transactional and batch
• Fault tolerant

– One thing about the cloud, you are designing for failure right?
• Configurable

– On a per install or SaaS basis
• Portable

– Fortunately not to Windows…
• Maintainable

– over multiple versions and years
• Supporting big data sets

– Billions of transactions available
– Millions of customers available

Thursday, 8 November 12

Plus ça change, plus c'est la même chose.

(The	
 more	
 things	
 change	
 the	
 more	
 they	
 stay	
 the	
 same)

Thursday, 8 November 12

• The only way we could hit anything like the
timescales required was to scale the
programme quickly

• And that meant multiple teams in multiple
workstreams

Thursday, 8 November 12

So, after five weeks we had broken the problem down into capabilties

Now we had to start scaling the teams to deliver these capabilities

Thursday, 8 November 12

Tip 2

Use Conway’s Law to structure teams

“…organiza>ons	
 which	
 design	
 systems	
 …	
 are	
 constrained	
 to	
 produce	
 designs
which	
 are	
 copies	
 of	
 the	
 communica>on	
 structure	
 of	
 those	
 organiza>ons”

Melvin	
 Conway,	
 1968

Thursday, 8 November 12

The first business capability - Users

• Responsible for creation and maintenance of users
in the system
– Up to 100 million of them per instance of the product

• Used by many clients with many usage patterns
– Call centre and website – CRUD
– Inbound batch files – CRUD x hundreds of thousands per

night

• Many downstream consumers of the data
– Fulfilment systems for example

Thursday, 8 November 12

Tip 3

Don’t decide everything at the point you know least

The Last Responsible Moment

Thursday, 8 November 12

We started with a business process…

and noticed something funny…

Thursday, 8 November 12

28

events...

Thursday, 8 November 12

I know what you are thinking…

ESB*
* Dan North coined the term Enterprise Night Bus…

Thursday, 8 November 12

Or you could use the web

Thursday, 8 November 12

Tip 4

Be of the web, not behind the web

Thursday, 8 November 12

RFC 5023 to be precise
Thursday, 8 November 12

33

application/atom+json

/user-request

/user-request/1223

Our Users
Capability

Thursday, 8 November 12

34

application/atom+json

/user-request

/user-request/1223

Our Users
Capability

Standard resource representations using well known
web standards – atom+json

Thursday, 8 November 12

35

application/atom+json

/user-request

/user-request/1223

Our Users
Capability

Reified the request to create a user. Clients POST
a request to create a user as an entry to an atom
collection.

Thursday, 8 November 12

Tip 5

Reify
to convert into or regard as a concrete thing: to reify a
concept.

If something is important, make it an
explicit part of your design

Thursday, 8 November 12

37

application/atom+json

/user-request

/user-request/1223

Our Users
Capability

Event queue has the single responsibility of
managing state transitions for the request to
create a user

Thursday, 8 November 12

38

application/atom+json

/user-request

/user-request/1223

Our Users
Capability

Queue Processing Engine implemented the Competing
Consumer pattern using Conditional GET, PUT and Etags
against the atom collection exposed by the event queue

Thursday, 8 November 12

39

application/atom+json

/user-request

/user-request/1223

Our Users
Capability

User Service and store is the system of record for
users

Thursday, 8 November 12

40

application/atom+json

/user-request

/user-request/1223

Our Users
Capability

After creation, representations of Users are available
at canonical locations in well defined formats and
creation events added to another atom collection

application/vnd.user+JSON/users/142

/users

Thursday, 8 November 12

Where they are available
for consumption by other

downstream systems

Thursday, 8 November 12

Reporting capability polls for new
user events

Fulfilment capability polls for new
user events

Thursday, 8 November 12

Our micro-services

• User Request Queue
–Forms the transactional boundary of the system

• Request Queue Processor
–Competing Consumer processes events on the

queue and POSTs them to

• User Service
–System of record for Users in the system
–Responsible for all state changes of those users
–Exposes events on those users to other systems

Thursday, 8 November 12

CHARACTERISTICS OF MICRO-
SERVICES

Thursday, 8 November 12

Small with a single responsibility

• Each application only does one thing

• Small enough to fit in your head
–James’ heuristic
–“If a class is bigger than my head then it is too big”

• Small enough that you can throw them away
–Rewrite over Maintain

Thursday, 8 November 12

Containerless and installed as well
behaved Unix services

• Embedded web container
– Jetty / SimpleWeb
– This has a lot of benefits for testing (inproctester for example)

and eases deployment

• Packaged as a single executable jar
– Along with their configuration
– And unix standard rc.d scripts

• Installed in the same way you would install httpd or any
other application
– Why recreate the wheel? Daemons seem to work ok for

everything else. Unless you are *special*?

Thursday, 8 November 12

Located in different VCS roots
• Each application is completely separate

• Software developers see similarities and abstractions
– And before you know it you have One Domain To Rule Them All

• Domain Driven Design / Conways Law
– Domains in different bounded contexts should be distinct – and its ok to have

duplication
– Use physical separation to enforce this

• There will be common code, but it should be library and infrastructure
code
– Treat it as you would any other open source library
– Stick it in a nexus repo somewhere and treat it as a binary dependency

Thursday, 8 November 12

Provisioned automatically

• The way to manage the complexity of many
small applications is declarative provisioning
–UAT:

• 2 * service A, Load Balanced, Auto-Scaled
• 2 * service B, Load Balanced, Auto-Scaled
• 1 * database cluster

Thursday, 8 November 12

Status aware and auto-scaling

• What good is competing consumer if you only
have one consumer?
–We don’t want to wake Laura up at three in the

morning any more to start a new process

• Use watchdog processes to monitor in-app
status pages
–Each app exposes metrics about itself
–In our case, queue-depth for example
–This allows others services to auto-scale to meet

throughput requirements

Thursday, 8 November 12

A single capability composed
of many small applications
and exposing a uniform

interface of Atom Collections

Thursday, 8 November 12

How the
capabilities form

a product

Thursday, 8 November 12

They interact via the web’s uniform
interface

• HTTP
– Don’t fight the battles already won
– Use no-brainer force multipliers like reverse proxies

• HATEOAS
– Link relations drive state changes
– Its an anti-corruption layer that allows the capability to evolve

independently of its clients

• Standard media types
– Can be used by many different clients
– You can monitor it using a feed reader if you want
– and it makes your QA’s lives a *lot* easier

Thursday, 8 November 12

Capabilities poll each other for events, forming an eventually
consistent system of systems

User
Capability

Fulfilment
Capability

Reporting
Capability

External
Suppliers

Call Centre

atom+json / HTTP (AJOH)

(AJOH) (AJOH)

(AJOH)

(AJOH)(AJOH)

Inbound Batch

Monitoring
Capability

atom+XML / HTTP

Thursday, 8 November 12

Tip 6

Favour	
 service	
 choreography	
 over	
 orchestra>on

Thursday, 8 November 12

Each is decoupled from it’s clients. scalable, testable and
deployable individually

User
Capability

Fulfilment
Capability

Reporting
Capability

External
Suppliers

Call Centre

atom+json / HTTP (AJOH)

(AJOH) (AJOH)

(AJOH)

(AJOH)(AJOH)

Inbound Batch

Monitoring
Capability

atom+XML / HTTP

Thursday, 8 November 12

Tip 7

Use hypermedia controls to decouple services

Thursday, 8 November 12

Each developed by a separate team, using whatever tech they
choose

User
Capability

Fulfilment
Capability

Reporting
Capability

External
Suppliers

Call Centre

atom+json / HTTP (AJOH)

(AJOH) (AJOH)

(AJOH)

(AJOH)(AJOH)

Inbound Batch

Monitoring
Capability

atom+XML / HTTP

Thursday, 8 November 12

Our stack
• Embedded Jetty (current project uses SimpleWeb)

• PicoContainer for DI

• Hibernate (but wrote our own SQL)

• Abdera for Atom

• Smoothie charts

• Metrics @codahale

• Graphite

Thursday, 8 November 12

Tip 8

Make it easy to do the right thing and
hard to do the wrong thing

use tooling and architectural tests to
make complex tasks simple

Thursday, 8 November 12

Infrastructure automation stack

• Fabric with boto

• AWS, but deployable to anything with SSH

• Maven (boo)

• Git

• Puppet for provisioning

Thursday, 8 November 12

NO SILVER BULLETS

Thursday, 8 November 12

this was hard to do well
• We haven’t even talked about

– Versioning
– Integration
– Testing
– Deployment

• Eventual Consistency can be tricky for people to get there
head around

• Developers like using enterprisy software
– No one got fired for choosing an ESB
– Convincing people to use the web is hard

Thursday, 8 November 12

SUMMARY

Thursday, 8 November 12

Lions commentary on Unix 2nd edition

The Unix Philosophy :s/pipes/hKp/	

Thursday, 8 November 12

Consistent and reinforcing practices

Hexagonal Business capabilities composed of:

Micro Services that you can

Rewrite rather than maintain and which form

A Distributed Bounded Context.

Deployed as containerless OS services

With standardised application protocols and message semantics

Which are auto-scaling and designed for failure

Thursday, 8 November 12

Tip 9

Always have ten tips

Thursday, 8 November 12

@boicy
http://bovon.org

jalewis@thoughtworks.com

Thanks!

Thursday, 8 November 12

http://bovon.org
http://bovon.org
http://bovon.org
http://bovon.org

