ThoughtWorks'

Micro Services

Java, the Unix way

ThoughtWorks'

Principal Consultant

Senior Engineer

s&"}rj teller

@boicy http://bovon.org jalewis@thoughtworks.com

Thursday, 8 November 12

http://bovon.org
http://bovon.org
http://bovon.org
http://bovon.org

WHAT I DID LAST SUMMER

Or how we designed and builk a Resource Oriented,
Event Driven System out of applications about 1000
Lines Llowng...

Thursday, 8 November 12

In the beginning...

* There was a new product being developed by
an organisation in London

* The organisation had gathered their list of
high level requirements

* And they asked ThoughtWorks if we could
help them design and build it...

So we took a look at their
requirements

 Me and my mates at ThoughtWorks

» Worked out to be about a lot of points worth
of User Stories

Ve
- - - - e == - — T T T T f _
Ve
I U -
Ve
____________ 7
I ~
Ve
et
Half way J
‘l‘hr005h N [
Ve
- ”
Ve
7 H 1“>
Conws hell , ©a
Lome freczes pigs f’q d&iﬁ; of
home Universe

Thursday, 8 November 12

Tip 1
Divide and conquer

break down complex problems into
smaller chunks that can be solved
individually

¥ e ¥ = s I L e e
. il X Fr A TaPE T iy

e i e e M A W et M i B NP sk aars

-

Thursday, 8 November 12

Thursday, 8 November 12

heavy industrial

Thursday, 8 November 12

commercial

Thursday, 8 November 12

Thursday, 8 November 12

Each small box represents a C&Fvabitiﬁv,

composed of one or more services

‘
\
'
:
'
'
|

13

Thursday, 8 November 12

And there were some, umm, interesting
non-functional requirements too

W ers s oo ™ g we

1000TPS, 99th percentile latency of < 2
seconds

15

Thursday, 8 November 12

W ers s oo ™ g we

Support a user base of 100 million active
customers

16

Thursday, 8 November 12

Y o, ® O™ O o ™ g 9w

Support bulk loads of 30 — 90 million records
nightly and keep them for six months

(16,200,000,000 records)

17

Thursday, 8 November 12

Did | mention PCI Level 17

Finally, this Is a product build.

So It needed to be modular /
<cough> “infinitely configurable”

The product need to to be...

* Performant
— fairly high throughput both transactional and batch

« Fault tolerant
— One thing about the cloud, you are designing for failure right?

« Configurable
— On a per install or SaaS basis

« Portable
— Fortunately not to Windows...

« Maintainable
— over multiple versions and years

« Supporting big data sets
— Billions of transactions available
— Millions of customers available

Thursday, 8 November 12

Plus ca change, plus c'est la méme chose.

(The more things change the more they stay the same)

Thursday, 8 November 12

* The only way we could hit anything like the
timescales required was to scale the
programme quickly

* And that meant multiple teams in multiple
workstreams

Now we had to start scaling the teams to deliver these capabillities

Thursday, 8 November 12

Tip 2
Use Conway’s Law to structure teams

“...organizations which design systems ... are constrained to produce designs
which are copies of the communication structure of those organizations”

Melvin Conway, 1968

Thursday, 8 November 12

The first business capabillity - Users

* Responsible for creation and maintenance of users
in the system

—Up to 100 million of them per instance of the product

* Used by many clients with many usage patterns
— Call centre and website — CRUD

— Ir]brc])und batch files — CRUD x hundreds of thousands per
night

 Many downstream consumers of the data
— Fulfilment systems for example

Thursday, 8 November 12

Tip 3

The Last Responsible Moment

Don’t decide everything at the point you know least

Thursday, 8 November 12

We started with a business process..

C R(AT&
OSE R
VMI e e) caamg o
1
Loo
-

and noticed something funny.

T e - - —— - g - e = et e = - -
- —

P

Thursday, 8 November 12 _

evenls...

Thursday, 8 November 12

* Dan North coined the term Enterprise Night Bus...

x

| know what you are thinking...

w .. AT X
Or you could use the web

i
-

REST In Practice

Thursday, 8 November 12

Tip 4

Be of the web, not behind the web

v

RFC 5023 to be precise

Thursday, 8 November 12

Cur Users

Ca[pabitiEv

/user-request

L/ Q application/atom+json \
| /user-request/1223

~

]

_

)

r

USER
Sm

EVENT

STORE

use&

ICE STORE
J

Thursday, 8 November 12

Qur Users |
C& FQ\ b E,, i, E;&:j —_— Q application/atom+json \

Standard resource representations using well known
web standards — atom+json

Thursday, 8 November 12

Qur Users |
C& FQ\ b E,, i, E,&:j —_— Q application/atom+json \

Reified the request to create a user. Clients POST
a request to create a user as an entry to an atom
collection.

Thursday, 8 November 12

Tip 5

If something is important, make it an
explicit part of your design

Reify
to convert into or regard as a concrete thing: to reify a
concept.

Thursday, 8 November 12

Qur Users |
C& FQ\ b E,, i, E,&:j —_— Q application/atom+json \

Event queue has the single responsibility of
managing state transitions for the request to
create a user

Thursday, 8 November 12

Cur Users |
C:& F& b £L E;&v | Juser-request/1223 {

application/atom+json

Queue Processing Engine 1implemented the Competing
Consumer pattern using Conditional GET, PUT and Etags
against the atom collection exposed by the event queue

Thursday, 8 November 12

Qur Users |
CQ FQ\ b E,, i, E,&:j —_— Q application/atom-+json \

User Service and store 1s the system of record for
users

Thursday, 8 November 12

OMT' USQY’S After creation, representations of Users are available

at canonical locations in well defined formats and

CQF&bEA’E"&v creation events added to another atom collection

user-reques

application/vnd.user+JSON

/users/142 \
y

Thursday, 8 November 12

Where they are available
for consumption by other
dowhskream

Reporting capability polls for new
user evenks

VSER © REPORT
SERVICE N ™~ T L= IMné
. %r

~

e
» 6
:. “sgp.\m‘ f‘/‘%.
Fockw
- MENT

Fulfilment capability polls for new
user evenkts

Thursday, 8 November 12

Our micro-services

» User Request Queue
—Forms the transactional boundary of the system

» Request Queue Processor

—Competing Consumer processes events on the
queue and POSTs them to

» User Service
—System of record for Users in the system
—Responsible for all state changes of those users
—EXposes events on those users to other systems

Thursday, 8 November 12

CHARACTERISTICS OF MICRO-
SERVICES

Small with a single responsibility

» Each application only does one thing

» Small enough to fit in your head
—James’ heuristic
—"If a class is bigger than my head then it is too big”

« Small enough that you can throw them away
—Rewrite over Maintain

Containerless and installed as well
behaved Unix services

 Embedded web container
— Jetty / SimpleWeb

— This has a lot of benefits for testing (inproctester for example)
and eases deployment

» Packaged as a single executable jar
— Along with their configuration
— And unix standard rc.d scripts

* |nstalled in the same way you would install httpd or any
other application

— Why recreate the wheel? Daemons seem to work ok for
everything else. Unless you are *special*?

Thursday, 8 November 12

Located in different VCS roots

Each application is completely separate

Software developers see similarities and abstractions
— And before you know it you have One Domain To Rule Them All

Domain Driven Design / Conways Law

— Domains in different bounded contexts should be distinct — and its ok to have
duplication

— Use physical separation to enforce this

Thgre will be common code, but it should be library and infrastructure
code

— Treat it as you would any other open source library
— Stick it in a nexus repo somewhere and treat it as a binary dependency

Thursday, 8 November 12

Provisioned automatically

* The way to manage the complexity of many
small applications Is declarative provisioning

—UAT:

e 2 ¥ service A, Load Balanced, Auto-Scaled
« 2 ¥ service B, Load Balanced, Auto-Scaled
« 1 * database cluster

Thursday, 8 November 12

Status aware and auto-scaling

* What good is competing consumer if you only
have one consumer?

—We don't want to wake Laura up at three in the
morning any more to start a new process

» Use watchdog processes to monitor in-app
status pages

—Each app exposes metrics about itself
—In our case, queue-depth for example

—This allows others services to auto-scale to meet
throughput requirements

Thursday, 8 November 12

A single capability composed
of many small applications
and exposing a uniform
interface of Atom Collections

H O & L\
t‘:&pab&t&&@.s form
a product

They interact via the web’s uniform
interface

+ HTTP
—Don't fight the battles already won

— Use no-brainer force multipliers like reverse proxies

« HATEOAS

— Link relations drive state changes

— Its an anti-corruption layer that allows the capability to evolve
iIndependently of its clients

« Standard media types
— Can be used by many different clients
—You can monitor it using a feed reader if you want
—and it makes your QA's lives a *lot* easier

Thursday, 8 November 12

Capabilities poll each other for events, forming an eventually
consistent system of systems

atom+json / HTTP (AJOH)
Monitoring Reporting /\
Capability Capability

% (AJOH)

atom+XMl/ HTTP (AJOR) >’\
)
User) Fulfilment
Capability Capability
(AJOH)

External
Suppliers

Thursday, 8 November 12

Tip 6

Favour service choreography over orchestration

Thursday, 8 November 12

Each is decoupled from it's clients. scalable, testable and
depi.ovoubi.@_ imdividu&tlv

atom+json / HTTP (AJOH)
Monitoring Reporting /\
Capability Capability

atom+XM /HTTP (AJOH) (AJOH)
)
User FquiIm.elnt
Capability Capability
AJOH)
Q (AJOH)
yound Batc SD!
External
Suppliers
L — T——

Thursday, 8 November 12

Tip 7

Use hypermedia controls to decouple services

Thursday, 8 November 12

Each developed by a separate team, using whatever tech they
choose

atom+json / HTTP (AJOH)
Monitoring Reporting /\
Capability Capability

atom+XMl/ HTTP (AJOH) "{ >’\ (AJOH)

®)
User) Fulfilm.elnt
Capability Capability
(AJOH)

@ (AJOH)
E Q
External
Suppliers
I — N

Thursday, 8 November 12

Our stack

Embedded Jetty (current project uses Simple\Web)

PicoContainer for DI

Hibernate (but wrote our own SQL)

Abdera for Atom

« Smoothie charts

Metrics @codahale

Graphite

Thursday, 8 November 12

Tip 8

Make it easy to do the right thing and
hard to do the wrong thing

use tooling and architectural tests to
make complex tasks simple

Infrastructure automation stack

 Fabric with boto

 AWS, but deployable to anything with SSH
* Maven (boo)

e Git

* Puppet for provisioning

NO SILVER BULLETS

this was hard to do well

* We haven't even talked about
—Versioning
— Integration
— Testing
— Deployment

* Eventual Consistency can be tricky for people to get there
head around

* Developers like using enterprisy software
— No one got fired for choosing an ESB
— Convincing people to use the web is hard

Thursday, 8 November 12

SUMMARY

but "invented a slightly better one. That finally got changed once more to what we have
today. He put pipes into Unix." Thompson also had to change most of the programs,
because up until that time, they couldn't take standard input. There wasn't really a need;
they all had file arguments. "GREP had a file argument, CAT had a file argument."

The next morning, "we had this orgy of “one liners." Everybody had a one liner.
Look at this, look at that. ...Everybody started putting forth the UNIX philosophy. Write

programs that do one thing and do 1t well. Write programs to work together. Write
programs that handle text streams, because that 1s a universal interface." Those 1deas
which add up to the tool approach, were there in some unformed way before pipes, but
they really came together afterwards. Pipes became the catalyst for this UNIX
philosophy. "The tool thing has turned out to be actually successtul. With pipes, many
programs could work together, and they could work together at a distance."

The Unix Philosophy :s/pipes/http/

Lions commentary on Unix 2nd edition

Thursday, 8 November 12

Consistent and reinforcing practices

Hexagonal Business capabilities composed of:

Micro Services that you can

Rewrite rather than maintain and which form

A Distributed Bounded Context.

Deployed as containerless OS services

With standardised application protocols and message semantics

Which are auto-scaling and designed for failure

Thursday, 8 November 12

Tip 9

Always have ten tips

Thought\Works:

Thanlks!

@boicy
http://bovon.org

jalewis@thoughtworks.com

http://bovon.org
http://bovon.org
http://bovon.org
http://bovon.org

