Clojure in the Wild Web

/ Reflections

Ignacio Thayer, ReadyForZero.com

2 ReadyForZero

Summer 2010: The Beginning

e 2 person team
e \alidation is key

e No communication overhead
o "No conventions required”

2 ReadyForZero

1: Frameworks: easy things are easy

... And some complicated things are too

Up and running

Relatively simple at the start

Their advantages run out

Strong in areas that Clojure is currently weak

2 ReadyForZero

Early 2011: The Launch

e Django
e jQuery Soup
e Common bug patterns emerged

2 ReadyForZero

2: "The Most Common Bug”

Non-existent key

e Javascript "undefined"
e Python's "has no attribute”
e Clojure's missing key in map

2 ReadyForZero

2: "The Most Common Bug"

Contracts

(defconstrainedfn create-client

"Creates Billpay client ..."

[user params]

[(=> params
> params
> params

—> params
> params

:first-name string?)

:last—-name string?)

:dob date-string?)

:addressl string?)

:address?2 ((optional string?)))

valid-response?]

;; do-stuff)

¢ ReadyForZero

2: "The Most Common Bug"

Checked threading

(def x {:v {:2 1}}1)
¥ (> x :y :2)
1
id

(=> x 1y :Q)
nil

(=!>x 1y :9) ;o "(=1> (=!> x :y) :g) is nil!"

2 ReadyForZero

3 months after launch

Began using Clojure

e [nitially for analysis
e REPL sold it

2 ReadyForZero

3: The Clojure REPL is a delight

In general

e Build code up
e Real data

What's different?

2 ReadyForZero

3: The Clojure REPL is a delight

Composable syntax

(map :date joined users)
[2012-01-02 2012-01-03 ...]

(filter after-xmas? (map :date joined users))

[2012-12-26 ...]
(count (filter after-xmas? (map :date joined users))
1291

2 ReadyForZero

3: The Clojure REPL is a delight

Concatenative Programming
Threading (->)

(-> user (assoc :logins (get-logins user))

(assoc :balance (get-balance user)))

{:1d 1 :email "..." :logins [1 3 5] :balance 123.0}

2 ReadyForZero

3: The Clojure REPL is a delight

Concatenative Programming

Thrush (->>)

(->> users count)
1000
(->> users (take 5) (map println))

(->> users (map :date joined) (take 5) (map println))

(->> users (map :date joined) (filter after-xmas?))

2 ReadyForZero

Series A

Thinking ahead

e Next Milestones
e Hiring

2 ReadyForZero

Webapp in Clojure

Noir

Korma

Postgres

Mongo (analytics only)
Backbone.js

2 ReadyForZero

4: Code as Communication

e Succinct nor verbose is comprehensible

e Use the expressiveness of the language to
promote comprehension

e Keep namespaces clean

2 ReadyForZero

4: Code as Communication

DSLs: Web endpoints

(defendpoint mobilel [:post "/login"]
(out-example examples/login)
(in {:email string?
:password string?})
(out {:success not-nil?})
(return {:as creds}

)

2 ReadyForZero

4: Code as Communication

DSL: User Notifications

(defnotification :successful-payment
(email {:subject "Your payment has arrived"
:template "rfz plus successful payment"})
(web {:text "Your payment of {{amt}} to {{dest}}..."})
(mobile-push {:text "Payment to {{dest}} delivered."
:location "rfz://tabs/payments"})
(limit 1 :by :1d :ever))

2 ReadyForZero

4: Code as Communication

Same level as the language

Why should there be privileged syntax?

(defn+ mult [x] (* x 3))
(1f+ (even? x) (/ 2 x) (-> x (* 3) (+ 1))
(let+ [x 3] (println x))

2 ReadyForZero

5: Humility and convention

e Code should look like the code around it
e Be humble, agree to them as a team, and
enforce them (% x)

2 ReadyForZero

6: Maps

e Think in pipelines with ->

e Prefer maps to tuples or vectors
e Keep them flat

e Use built-in functions

2 ReadyForZero

7: Skip the trickiest code

Concurrency

® pmap
e pvalues

(let [[1 b] (pvalues (get-logins) (get-balance))]]
(=> user (assoc :logins 1)
(assoc :balance b)

2 ReadyForZero

Clojure is great for non-trivial apps

e Tricky made simple
e Convention and culture
e EXpressiveness

nacho@readyforzero.com
2 ReadyForZero

