
Clojure in the Wild Web

Ignacio Thayer, ReadyForZero.com

7 Reflections

● 2 person team
● Validation is key
● No communication overhead

○ "No conventions required"

Summer 2010: The Beginning

● ... And some complicated things are too
● Up and running
● Relatively simple at the start
● Their advantages run out
● Strong in areas that Clojure is currently weak

1: Frameworks: easy things are easy

● Django
● jQuery Soup
● Common bug patterns emerged

Early 2011: The Launch

Non-existent key

● Javascript "undefined"
● Python's "has no attribute"
● Clojure's missing key in map

2: "The Most Common Bug"

(defconstrainedfn create-client
"Creates Billpay client ..."
[user params]
[(-> params :first-name string?)
 (-> params :last-name string?)
 (-> params :dob date-string?)
 (-> params :address1 string?)
 (-> params :address2 ((optional string?)))
=>
valid-response?]
;; do-stuff)

Contracts
2: "The Most Common Bug"

(def x {:y {:z 1}}])
(-> x :y :z)
1
(-> x :y :q)
nil
(-!> x :y :q) ;; "(-!> (-!> x :y) :q) is nil!"

Checked threading
2: "The Most Common Bug"

Began using Clojure

● Initially for analysis
● REPL sold it

3 months after launch

In general

● Build code up
● Real data

What's different?

3: The Clojure REPL is a delight

(map :date_joined users)
[2012-01-02 2012-01-03 ...]
(filter after-xmas? (map :date_joined users))
[2012-12-26 ...]
(count (filter after-xmas? (map :date_joined users))
1291

Composable syntax
3: The Clojure REPL is a delight

Concatenative Programming

Threading (->)

(-> user (assoc :logins (get-logins user))
 (assoc :balance (get-balance user)))

 {:id 1 :email "..." :logins [1 3 5] :balance 123.0}

3: The Clojure REPL is a delight

Concatenative Programming

Thrush (->>)

(->> users count)
1000
(->> users (take 5) (map println))
...
(->> users (map :date_joined) (take 5) (map println))
....
(->> users (map :date_joined) (filter after-xmas?))

3: The Clojure REPL is a delight

Thinking ahead

● Next Milestones
● Hiring

Series A

● Noir
● Korma
● Postgres
● Mongo (analytics only)
● Backbone.js

Webapp in Clojure

● Succinct nor verbose is comprehensible
● Use the expressiveness of the language to

promote comprehension
● Keep namespaces clean

4: Code as Communication

(defendpoint mobile1 [:post "/login"]
 (out-example examples/login)
 (in {:email string?
 :password string?})
 (out {:success not-nil?})
 (return {:as creds}
 ))

DSLs: Web endpoints
4: Code as Communication

(defnotification :successful-payment
 (email {:subject "Your payment has arrived"
 :template "rfz_plus_successful_payment"})
 (web {:text "Your payment of {{amt}} to {{dest}}..."})
 (mobile-push {:text "Payment to {{dest}} delivered."
 :location "rfz://tabs/payments"})
 (limit 1 :by :id :ever))

DSL: User Notifications
4: Code as Communication

Why should there be privileged syntax?

(defn+ mult [x] (* x 3))
(if+ (even? x) (/ 2 x) (-> x (* 3) (+ 1))
(let+ [x 3] (println x))

Same level as the language
4: Code as Communication

● Code should look like the code around it
● Be humble, agree to them as a team, and

enforce them (☃ x)

5: Humility and convention

● Think in pipelines with ->
● Prefer maps to tuples or vectors
● Keep them flat
● Use built-in functions

6: Maps

7: Skip the trickiest code

Concurrency

● pmap
● pvalues

(let [[l b] (pvalues (get-logins) (get-balance))]
(-> user (assoc :logins l)
 (assoc :balance b)

● Tricky made simple
● Convention and culture
● Expressiveness

nacho@readyforzero.com

Clojure is great for non-trivial apps

