

Scaling Facebook Engineering

David Mortenson

People on Facebook

New Products

▪ Timeline

▪ New iOS and Android

Apps

▪ Facebook Messenger

▪ Ticker

▪ Open Graph

▪ Many more

Facebook Engineering Team

Goal: maintain or increase the
efficiency per engineer as we grow

Challenges

▪ The n00b time sink

▪ Keeping development fast

▪ Unintended consequences

The n00b
Time Sink

Brief History: 2008

▪ Hiring 10 engineers / month

▪ Each team spending lots of time ramping up new engineers

▪ New engineers taking a while to come up to speed

▪ About to exceed Dumbar’s number of engineers (~150)

Goals of Bootcamp

▪ Get new engineers up to speed technically and culturally

▪ Give exposure to many different areas of the codebase

▪ Find a team at the intersection of their passion and impact

▪ Get new engineers doing useful work as soon as possible

Bootcamp Day 1: The Basics

▪ Meet your bootcamp mentor

▪ Get your dev server set up

▪ Learn about the core concepts of the FB www codebase

▪ Get your first bootcamp tasks

Bootcamp Day 1: First Assignment

Bootcamp Week 1: Learning & Hacking

▪ Intense training sessions on how things work at Facebook

▪ Customizing your dev environment

▪ Hang out with your cohort of bootcampers

▪ Complete & commit your 1st task

Bootcamp Weeks 2-4

▪ Your first change goes live to a billion people!

▪ Training sessions on back-end services, mobile, network,

data center design, etc

▪ Work on bootcamp tasks across FB stack

Bootcamp Weeks 4-6: Team Selection

▪ Learn about the many teams that need engineers

▪ Meet the engineers from teams you are most interested in

▪ Bootcamp tasks for your top teams

▪ Pick the team that intersects impact and your passion

Bootcamp Results

▪ Almost 1000 engineers graduated

▪ Feedback from bootcampers is consistently awesome

▪ New engineers come up to speed much faster

▪ Greatly reduced cost of ramping up new engineers

▪ New engineers get established and make friends faster

▪ Really helps new engineers understand Facebook culture

Keeping
Development
Fast

Facebook Development Environment

Why Fast Tools Matter

▪ Focus and flow are critical to high productivity

▪ Any development operation taking over 5s will cause engineers

to do a lightweight context switch

▪ Any operation taking over 2 minutes will cause a heavyweight

context switch

▪ These are productivity killers and need to be avoided at all cost!

0

5

10

15

2009 2010 2011 2012

Dev Sandbox Page Load Time
S

e
c
o

n
d
s

Other Critical Areas

▪ Source Control

▪ Testing

▪ Static analysis

▪ Task / bug tracking tool

▪ Code Review Tools

▪ Release

Unintended
Consequences

Brief History: 2008

▪ Engineers validate changes by testing them in their sandbox

▪ Code simple enough & engineering small enough that

engineers had a good idea of what a change could break

▪ Good monitoring in place to catch issues that slipped through

Brief History: 2009

▪ Engineering team getting close to 300 people

▪ Switch to git allowed development of more changes in parallel

▪ Complexity of the codebase exceeding the point where

anyone can keep it all in their head

▪ Increasing number of breaks that block other engineers

▪ Increasing number of bugs shipped to production

▪ Bottom line: the current model wasn’t scaling

Solution: Automated Testing

Introducing Testing at Facebook

▪ Built framework to make it easy to write the tests

▪ Integrated unit testing in the engineer workflow

▪ Focused first on writing tests for one key area

▪ Developed experts / advocates in key teams across FB

▪ Leveraged incidents to encourage more people to write tests

▪ Indoctrinated bootcampers

Testing At Facebook: Initial Results

▪ ~3000 tests written in 3 years

▪ Good reduction in breakage in areas with test coverage

▪ Reduction in number of defects shipped to users

Testing At Facebook: Curse of Success

0

20

40

60

80

100

120

0

2000

4000

6000

8000

10000

2008 2009 2010 2011

Tests

Failures

Cleaning house

▪ Big effort to get our test failures down to 0

▪ Killed several hundred low value & commonly failing tests

▪ Improved the reliability of the testing infrastructure

▪ Started disabling tests that were failing for > 1 week

▪ Started disabling intermittently failing tests

▪ Built a test failure analyzer

▪ Built a shim for our graph cache to reduce dependencies

▪ Worked with teams with unreliable tests to improve them

Game Theory

Results So Far: Better But Not Enough

▪ Failures still in the 40-50 per run

▪ Main cause: test failures discovered too late

Faster Feedback

Testing At Facebook: Now

0

20

40

60

80

100

120

0

2000

4000

6000

8000

10000

2008 2009 2010 2011 2012

Tests

Failures

So: did it work?

Commits every Month

Lots of Work Left

▪ Mobile

▪ Back end services

▪ Making every engineer more productive as we grow

How are you tackling these
challenges?

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

