
14:38 © 2005-2012, hello2morrow 1

Software Sustainability

Alexander v. Zitzewitz
hello2morrow, Inc.

Code Quality? Yes please, if it is free…

!   Do you have binding rules for code quality?
!   Do you measure quality rule violations on a daily base?
!   Is your architecture defined in a formal way?
!   Do you measure architecture violations on a daily base?
!   Does quality management happen at the end of development?
!   Do you think, that more needs to be done in that area and that

this would be beneficial for the team and the company?

11/7/12 © 2005-2012, hello2morrow 2

Part I: Symptoms of Structural Erosion

14:52 © 2005-2012, hello2morrow 3

14:55 © 2005-2012, hello2morrow 4

Erosion of Architecture – Symptoms (Robert C. Martin)

!   Rigidity – The system is hard to change because every change
forces many other changes.

!   Fragility – Changes cause the system to break in conceptually
unrelated places.

!   Immobility – It's hard to disentangle the system into reusable
components.

!   Viscosity – Doing things right is harder than doing things wrong.
!   Opacity – It is hard to read and understand. It does not express

its intent well.

Overall: “The software starts to rot like a bad piece of meat”

14:58 © 2005-2012, hello2morrow 5

Erosion of Architecture – Reasons

!   System knowledge and skills are not evenly distributed
!   Complexity grows faster than system size
!   Unwanted dependencies are created without being noticed
!   Coupling and complexity are growing quickly. When you realize

it, it is often too late
!   Most projects don’t measure quality on a regular base
!   Management considers software as a black box
!   Quality measurement is done at the end of development
!   Time pressure is always a good excuse to sacrifice structure
!   The Law of Entropy?

Cost of Structural Erosion / Technical Debt

14:58 © 2005-2011, hello2morrow 6

Part II: Technical Quality and Sustainability

11/7/12 © 2005-2011, hello2morrow 7

How to Define Technical Quality?

“Technical quality of software can be defined as the level of conformance of a software system to
a set a set of rules and guidelines derived from common sense and best practices. Those rules
should cover software architecture, programming in general, testing and coding style.”

!   Technical quality cannot be achieved by testing only
!   Technical quality manifests itself in very line of code
!   Four aspects of technical quality:

!   Architecture / Dependency-Structure
!   Software metrics
!   Programming rules
!   Testability and test coverage

!   Which of those aspects has the biggest cost impact?
!   Measuring of technical quality requires static analysis

11/7/12 © 2005-2012, hello2morrow 8

How to Achieve Software Sustainability?

!   Sustainability cannot be achieved without the implementation of rules
and guidelines

!   Achieving sustainability requires effort and this effort needs to be
considered in iteration planning.

!   By investing a relatively small additional effort today a huge future effort
can be avoided.

!   On the short term, building sustainable software always costs more. On
the long term it can reduce the overall cost of a project by more than
50%.

!   Many projects suffer from being short-sighted. Mostly there is no long
term planning or strategy in place to achieve a sustainable code base.

!   Typically it is sufficient to spend about 20% of the time available in each
iteration on sustainability.

11/7/12 © 2005-2012, hello2morrow 9

Sustainability and Technical Quality

!   Sustainability and technical quality are two sides of the same
coin.

!   Technical quality is a precondition for changeability,
maintainability, testability and extensibility.

!   Investments in technical quality only pay off in the medium and
long term, but the return on investment is close to astronomical.

11/7/12 © 2005-2012, hello2morrow 10

15:14 © 2005-2012, hello2morrow 11

Your System

User Interface

Business Logic

Data Access

How to model Architecture

•  Step 1: Cut horizontally into Layers

•  Step 2: Cut vertically into vertical slices by functional aspects

C
on

tra
ct

s

C
us

to
m

er

U
se

r

C
om

m
on

•  Step 3: Defines the rules of engagement

Natural subsystems

15:14 © 2005-2012, hello2morrow 12

How to measure coupling

!   ACD = Average Component Dependency
!   Average number of direct and indirect dependencies
!   rACD = ACD / number of elements
!   NCCD: normalized cumulated component dependency

6

3 3

1 1 1

CCD = 15
ACD = 15/6 = 2,5

3

1 1

2 3 2

Dependency Inversion
ACD = 12/6 = 2

6

6 6

1 6 1

Cycles

ACD = 26/6 = 4,33

15:15 © 2005-2012, hello2morrow 13

How to keep the coupling low?

!   Dependency Inversion Principle (Robert C. Martin)
!   Build on abstractions, not on implementations
!   Best pattern for a flexible architecture with low coupling
!   Have a look at dependency injection frameworks (e.g. Spring)

14:38 © 2005-2011, hello2morrow 14

Architecture metrics of Robert C. Martin

Di = Number of incoming dependencies
Do = Number of outgoing dependencies
Instability I = Do / (Di+Do)

Build on abstractions, not on implementations

X is „stable“ Y is „instable“

14:38 © 2005-2011, hello2morrow 15

Abstractness (Robert C. Martin)

Nc = Total number of types in a type container
Na = Number of abstract classes and interfaces in a type container
Abstractness A = Na/Nc

14:38 © 2005-2011, hello2morrow 16

D = A + I – 1

Value range [-1 .. +1]

!   Negative values are in the „Zone of pain“
!   Positive values belong to the „Zone of uselessness“
!   Good values are close to zero (e.g. -0,25 to +0,25)
!   „Distance“ is quite context sensitive

Metric „distance“ (Robert C. Martin)

Cyclical Dependencies are Harmful

!   "Guideline: No Cycles between Packages. If a group of packages have
cyclic dependency then they may need to be treated as one larger
package in terms of a release unit. This is undesirable because
releasing larger packages (or package aggregates) increases the
likelihood of affecting something." [AUP]

!   "The dependencies between packages must not form cycles." [ASD]

!   "Cyclic physical dependencies among components inhibit
understanding, testing and reuse. Every directed a-cyclic graph can be
assigned unique level numbers; a graph with cycles cannot. A physical
dependency graph that can be assigned unique level numbers is said to
be levelizable. In most real-world situations, large designs must be
levelizable if they are to be tested effectively. Independent testing
reduces part of the risk associated with software integration " [LSD]

Example: Cyclical Dependency

AlarmClock

AlarmHandler

Presentation Model

Main

AlarmToConsole

AlarmToFile

Breaking the Cycle

AlarmClock

AlarmHandler

Main

<<interface>>
IAlarmHandler

AlarmToConsole

AlarmToFile

Presentation
<<bottom>>

Model

Another Cyclical Dependency

Customer

Order[] listOrders() { …}

Order Customer

Order

Customer cust;

Cycle broken...

Customer

Order Customer

Order

Customer cust;
static Order[] listOrders(Customer c) { …}

Consequences of Structural Erosion

11/7/12 © 2005-2012, hello2morrow 22

Metric “Structural Debt Index”

!   Packages that are part of package cycle groups are sorted by
calculating the difference between outgoing and incoming
dependencies. Special rules for draws.

!   Packages with more outgoing dependencies are above
packages with more incoming dependencies

!   All upward going dependencies are considered bad
!   SDI = 10 * (type dependencies to cut) + (code refs of

dependencies to cut)
!   Metric should give an idea how difficult it is to clean up a tangled

mess

11/7/12 © 2005-2012, hello2morrow 23

Part III: How to Implement Sustainability

11/7/12 © 2005-2012, hello2morrow 24

Improvements Require Transparency
Six Sigma for Software

Define

Measure

Analyze Improve

Control

11/7/12 © 2005-2012, hello2morrow 25

Preconditions for Sustainability

!   Nothing can be delivered that does not meet the standards
defined fro technical quality.

!   Rules and guidelines are documented and checked in an
automated way.

!   Each project needs to defined an architectural model.
!   Cyclical dependencies have to be avoided.
!   Quality metrics and checking for rule violations are part of the

daily/nightly build.
!   Quality criteria are a core component of development guidelines.
!   Sustainability as a goal must be supported by all management

levels.

11/7/12 © 2005-2012, hello2morrow 26

15:32 © 2005-2012, hello2morrow 27

Some Simple Rules for Sustainable Projects

!   Rule 1:
Define a cycle free logical architecture down to the level of subsystems
and a strict and consistent package naming convention

!   Rule 2:
Do not allow cyclic dependencies between different packages

!   Rule 3:
Keep the relative ACD low (< 7% for 500 compilation units, NCCD < 6)

!   Rule 4:
Limit the size of Java files (700 LOC is a reasonable value)

!   Rule 5:
Limit the cyclomatic complexity of methods (e.g. 15)

!   Rule 6:
Limit the size of a Java package (e.g. less than 50 types)

DZone’s “Designing Quality Software” Refcard

11/7/12 © 2005-2012, hello2morrow 28

Refcard #130: http://refcardz.dzone.com/

Relevant White-Papers:

11/7/12 © 2005-2012, hello2morrow 29

Download from www.hello2morrow.com

15:37 © 2005-2011, hello2morrow 30

Awards and nominations
!   Second prize of Jax innovation award in April 2007
!   Nomination for European ICT prize 2007
!   Awarded as most exciting innovation on Systems 2005

Q & A

Some of our more than 300 customers:

Q & A

My Email Address:

a.zitzewitz@hello2morrow.com

Win a brand new IPad by visiting our booth
And watch a demo of Sonargraph

11/7/12 © 2005-2012, hello2morrow 32

