. HELLOZMORROW

Software Sustainability

Alexander v. Zitzewitz
hello2morrow, Inc.

14:38 © 2005-2012, hello2morrow 1

. HELLO MORROW

Code Quality? Yes please, if it is free...

Do you have binding rules for code quality?

Do you measure quality rule violations on a daily base?

Is your architecture defined in a formal way?

Do you measure architecture violations on a daily base?

Does quality management happen at the end of development?

Do you think, that more needs to be done in that area and that
this would be beneficial for the team and the company?

© © © © © 0O

11/7/12 © 2005-2012, hello2morrow

HELLOZMORROW

Part |: Symptoms of Structural Erosion

© 2005-2012, hello2morrow

14:52

. HELLO MORROW

Erosion of Architecture — Symptoms (Robert C. Martin)

O Rigidity — The system is hard to change because every change
forces many other changes.

O Fragility — Changes cause the system to break in conceptually
unrelated places.

O Immobility — It's hard to disentangle the system into reusable
components.

O Viscosity — Doing things right is harder than doing things wrong.

O Opacity — It is hard to read and understand. It does not express
its intent well.

Overall: “The software starts to rot like a bad piece of meat”

14:55 © 2005-2012, hello2morrow

. HELLO MORROW

Erosion of Architecture — Reasons

System knowledge and skills are not evenly distributed
Complexity grows faster than system size
Unwanted dependencies are created without being noticed

Coupling and complexity are growing quickly. When you realize
it, it is often too late

Most projects don’'t measure quality on a regular base
Management considers software as a black box

Quality measurement is done at the end of development
Time pressure is always a good excuse to sacrifice structure
The Law of Entropy?

© 0 0 ¢

© © © 0 ©

14:58 © 2005-2012, hello2morrow

. HELLOZMORROW

Cost of Structural Erosion / Technical Debt

A
Cost of Change

Architecture Managed

Time

14:58 © 2005-2011, hello2morrow 6

e 1Y o T
!;'.: : =—_5r @ @ = - 2 1l
{hss = Geed ¥ bt A p :
‘:\f l - ! / -
UL e ey= e —
ol
i |
— - — 1
H 5 i ' SRy :j
g 3 =] = = -4 5
! A o 3 o z
| ' ' v Tan Beattie
E © n20 —/ ¢ 1500 —-—/ ¢ 920
2205 ‘ J0OS0 J 1600 ‘ 1600 1600 1600 2870 1615
16140
11/7/12 © 2005-2011, hello2morrow

. HELLO MORROW

How to Define Technical Quality?

“Technical quality of software can be defined as the level of conformance of a software system to
a set a set of rules and guidelines derived from common sense and best practices. Those rules
should cover software architecture, programming in general, testing and coding style.”

>
>

Technical quality cannot be achieved by testing only
Technical quality manifests itself in very line of code
Four aspects of technical quality:

O Architecture / Dependency-Structure
O Software metrics

G Programming rules
O Testability and test coverage

Which of those aspects has the biggest cost impact?
Measuring of technical quality requires static analysis

11/7/12 © 2005-2012, hello2morrow 8

. HELLO MORROW

How to Achieve Software Sustainability?

O Sustainability cannot be achieved without the implementation of rules
and guidelines

O Achieving sustainability requires effort and this effort needs to be
considered in iteration planning.

O By investing a relatively small additional effort today a huge future effort
can be avoided.

O On the short term, building sustainable software always costs more. On
the long term it can reduce the overall cost of a project by more than
50%.

© Many projects suffer from being short-sighted. Mostly there is no long
term planning or strategy in place to achieve a sustainable code base.

O Typically it is sufficient to spend about 20% of the time available in each
iteration on sustainability.

11/7/12 © 2005-2012, hello2morrow

. HELLO MORROW

Sustainability and Technical Quality

O Sustainability and technical quality are two sides of the same
coin.

O Technical quality is a precondition for changeability,
maintainability, testability and extensibility.

O Investments in technical quality only pay off in the medium and
long term, but the return on investment is close to astronomical.

11/7/12 © 2005-2012, hello2morrow 10

7T

7

N

HELLOZMORROW

How to model Architecture

Your System
[e] Natural subsystems

—]> —> —]>

-

User Interface

v §2) o c
| | 8 £ 3 g
Business Logic = 2 ® £
o S o
| S) @) &)
v
Data Access \ /
<
* Step 1: Cut horizontally into Layers
« Step 2: Cut vertically into vertical slices by functional aspects
« Step 3: Defines the rules of engagement
15:14 © 2005-2012, hello2morrow 11

. HELLOZMORROW

How to measure coupling

O ACD = Average Component Dependency

O Average number of direct and indirect dependencies
G rACD = ACD / number of elements

© NCCD: normalized cumulated component dependency

CCD =15 Dependency Inversion ACD =26/6 = 4,33
ACD=15/6=25 ACD =12/6=2

15:14 © 2005-2012, hello2morrow 12

&
7

. HELLOZMORROW g[’
2 s

How to keep the coupling low?

O Dependency Inversion Principle (Robert C. Martin)
O Build on abstractions, not on implementations
O Best pattern for a flexible architecture with low coupling
O Have a look at dependency injection frameworks (e.g. Spring)

. High level
main Policy
. . . Abstract Abstract Abstract
mid 1 Mid 2 Mid 3 Interface Interface Interface
Detail Detail Detail Detail Detailed Detailed Detailed
Implementation Implementation Implementation
15:15 © 2005-2012, hello2morrow 13

2%
S22

%1%
I o7

b3

] — 1
Y
el .
A S 4 I
~ / N \A_“
\‘& "/ 1 & -
X
Xis ,stable Y is ,instable”

D, = Number of incoming dependencies
D, = Number of outgoing dependencies
Instability | =D, / (D;+D,)

Build on abstractions, not on implementations

14:38 © 2005-2011, hello2morrow 14

X

o

SR o
R
L S

o
b7

. HELLOZMORROW

Abstractness (Robert C. Martin)

N. = Total number of types in a type container
N, = Number of abstract classes and interfaces in a type container
Abstractness A = N_/N,

14:38 © 2005-2011, hello2morrow 15

. HELLOZMORROW | |
N

D=A+1-1

Value range [-1 .. +1]

O Negative values are in the ,Zone of pain“

O Positive values belong to the ,Zone of uselessness”

O Good values are close to zero (e.g. -0,25 to +0,25)

G ,Distance” is quite context sensitive ﬂ

14:38 © 2005-2011, hello2morrow 16

. HELLO MORROW

Cyclical Dependencies are Harmful

© "Guideline: No Cycles between Packages. If a group of packages have
cyclic dependency then they may need to be treated as one larger
package in terms of a release unit. This is undesirable because
releasing larger packages (or package aggregates) increases the
likelihood of affecting something." [AUP]

O "The dependencies between packages must not form cycles." [ASD]

O "Cyclic physical dependencies among components inhibit
understanding, testing and reuse. Every directed a-cyclic graph can be
assigned unique level numbers; a graph with cycles cannot. A physical
dependency graph that can be assigned unique level numbers is said to
be levelizable. In most real-world situations, large designs must be
levelizable if they are to be tested effectively. Independent testing
reduces part of the risk associated with software integration " [LSD]

HELLOZMORROW

Example: Cyclical Dependency

Presentation Model
—>
Main —
I |
‘l, AlarmClock
I
I
AlarmHandler < |

AlarmToConsole

AlarmToFile

HELLOZMORROW

Breaking the Cycle

Presentation Model

Main > AlarmClock

v v

<<interface>>
|AlarmHandler

AlarmHandler >

AlarmToConsole

AlarmToFile

. HELLOZMORROW

Another Cyclical Dependency

Order Customer
>
Order
Customer
Customer cust; >
<t | Order(] listOrders() { ...}

HELLOZMORROW

yo 1-k~ 0,131
). 1973
+ 0,02169%2 i,l’/") "‘.ﬁ.h"r

Cycle broken...

Order Customer
—>
Order
Customer cust; Customer
static Order[] listOrders(Customerc) { ...} | | ———1+— |

i, Al
o

AR S

=

7]

b aci
rds 1o
bcermvenine o
apekarkns icarvran
W beercopeces
-
/7/ / /«s
A
= l AV V4 4
it
b
Sy
R L A
e
% ama e recd
S amacrursrecls kgl
S bl piukegh
e

b ecresrerkoghiutery

© 2005-2012, hello2morrow

2 2]
X |

. HELLO MORROW

Metric “Structural Debt Index”

O Packages that are part of package cycle groups are sorted by
calculating the difference between outgoing and incoming
dependencies. Special rules for draws.

O Packages with more outgoing dependencies are above
packages with more incoming dependencies

O All upward going dependencies are considered bad

SDI =10 * (type dependencies to cut) + (code refs of
dependencies to cut)

O Metric should give an idea how difficult it is to clean up a tangled
mess

©

11/7/12 © 2005-2012, hello2morrow 23

S g
o T s
213y Aok 0,319 Lt

- (ph)e 00869873
.+ 0,0216912 '/ G "w--ux

11/7/12 © 2005-2012, hello2morrow 24

Improvements Require Transparency
Six Sigma for Software

11/7/12 © 2005-2012, hello2morrow 25

. HELLO MORROW

Preconditions for Sustainability

©

Nothing can be delivered that does not meet the standards
defined fro technical quality.

Rules and guidelines are documented and checked in an
automated way.

Each project needs to defined an architectural model.

Cyclical dependencies have to be avoided.

Quality metrics and checking for rule violations are part of the
daily/nightly build.

Quality criteria are a core component of development guidelines.

Sustainability as a goal must be supported by all management
levels.

11/7/12 © 2005-2012, hello2morrow 26

. HELLO MORROW

Some Simple Rules for Sustainable Projects

O Rule 1:
Define a cycle free logical architecture down to the level of subsystems
and a strict and consistent package naming convention

O Rule 2:
Do not allow cyclic dependencies between different packages

O Rule 3:
Keep the relative ACD low (< 7% for 500 compilation units, NCCD < 6)

© Rule 4:
Limit the size of Java files (700 LOC is a reasonable value)

O Rule 5:
Limit the cyclomatic complexity of methods (e.g. 15)

O Rule 6:
Limit the size of a Java package (e.g. less than 50 types)

15:32 © 2005-2012, hello2morrow 27

HELLOZMORROW

DZone’s

“Designin

e

7~
N

g

o
b7

GE
F1e(d)lns ¥ - 43053097
Ferfye §o(@rfio-a

S frmasdra
fie oy G- 3 aesnn
2625 05003965
e AT AT
R o B (s A

g Quality Software” Refc

Refcard #130: http://refcardz.dzone.com/

11/7/12

Get More Refcardz! Vi

£
o
o
o
c
o
N
<
3
3
2

DZone Refcardz

4 DZone Refcardz

2 Essentals for Software Architecture and Technical Quality

SR AT N
N LR

e
258 oo V77 576 - K0
212439 Ao 0,5379396 Lryttarl’
k). 73—
..p,oﬂ“'!i: s “ﬁ:utu,

e

e Essentials for Software Architecture

*Intraduction
* Large-Scale System Design
* Design Rules

* Programming Rules

* Hot Tips and more.

and Technical Quality

By Alexander von Zitzewitz

A satisfactory level of technical quality can easily be achieved
in any software project if it is taken into consideration from
the very beginning. The later you check the technical quality
of 8 project the more difficult and expensive it is to correct
flaws. Moreover, technical quality and software architecture
(structure) are closely related. A broken dependency structure
usually goes hand in hand with bad technical quality and
security wlnerabilities.

This Refeard will first provide a description of the biggest
enemy of technical quality, which is the structural erosion

of software. The best way to fight structural erosion is to
keep the large-scale structure of a software system in good
shape. Therefore, the main section of this Refeard focuses on
large-scale system design, which also has big implications

for application security aspects. Parts of this section are very
technical. The intention is to suppert architects and developers
in solving typical day-to-day issues that can negatively impact
technical quality and software structure. The last section
contains a very compact set of rules derived from experience
and real-world projects. Implementing and enforcing these
rules will help you to achieve a high level of technical quality
and maintainability while optimizing the productivity of your
development team.

The intanded audiences are software architects, developers,
quality managers and other technical stakeholders

INTRODUCTION

Al scftware projects start with great hope and ambition
Architects and developers are committed to ereating an
elegant and efficient piece of software that is easy to maintain
and fun to work on. Usually, they have & vital image of the
intended design in their mind. As the code base gets larger,
however, things start to change. The software is increasingly
harder to test, comprehend, maintain and extend. In Robert
C. Martin's terms, "The software starts to ot like a piece of
bad meat”

Structural Erosion of Software

This phenomenon is called " Structural Erosion” or
“Accumulation of Structural Debt”, and it happens in almost
every non-trivial software project. Usually, the erosion

begins with minor deviations from the intended design due

1o changes in requirements, time pressure or just simple
negligence. In the early stages of & project, this is not &
problem; but during the later stages, the structural debt grows
much faster than the code base. As a result of this process, it

becomes much harder to apply changes to the system without
breaking something. Productivity is decreasing significantly
and the cost of change grows continuously up to a point where
it becomes unbearable

Robert C. Martin described a couple of well-known symptoms
that can help you to figure out whether o not your application
is affected by structural erosion
« Rigidity. the system is hard to changa because every changs forces
many other changes

« Fragity: changes couse the system to bresk in conceptually unrelated
laces

« Immability its hard to disentangle the system into reusable

« Viscosity. doing things correctly is harder than daing things incorrectly.
« Opscity. the coda is hard 1o read and understand. It does not express
its intant wl

You would probably agree that those symptoms affect most
non-trivial software systems in one way or another. Moreover,
the symptoms get more severe the older system is and th
more people are working on it. The only way to svoid them in
the first place is to have a battle plan against structural erosion
integrated into the daily development process

Technical Quality

Technical quality of software is fundementally manifested in
the code base and can be defined as the conformance of the
source code to a set of commonly accepted best practices
and rules. Some might say the truth can only be found in the
source code. It is not sufficient to make sure that the software
is properly tested. Even if the tests show very positive results,
the technical quality could still be very poor. Therefore, it is
mandatory to have technical quality as a goal in mind from the
beginning of a project. The level of technical quality should

be measured in the build process, and violations should be
addressed as early as possible.

But how do you actually measure technical quality? First, you
need to agree on a set of common-sense rules and guidelines
that help you to achieve & good level of technical quality.
Then, you need tools to check and enforce the rules in the
daily development process. As a good initial measuring unit
for technical quality, you can use the number of rule violations
or the number of places you need to change in the code to fix
all violations. If you then weigh violations proportional to the
estimated effort needed to fix them, you can call the resulting
number the "Struetural Debt” of a software system

LARGE-SCALE SYSTEM DESIGN

Dependency Management

The large-scale design of a software system is manifested

by its dependancy strueture. Only by explicitly managing
dependencies over the complete software lifecycle is it
possible to avoid the negative side effects of structural erosion,
One importent aspeet of dependency management is to

avoid cyclic compile-time dependencies between software
components

Case 1: Cyclic Dependencies Case 2: Acycic Dependencies
Case 1 shows a eyclic dependency between units A, B and C.
Here, it is not possible to assign level numbers to the units,
leading to the following undesirable consequences

* Understanding the functionality behind a unitis only possible by
undecstanding ofl urvts

single unit implias the tast of all units.
« Reusa is limitad to anly ane alternstie: to reuse all units. This kind of
tight coupling is one of the resso
s hardly ever practiced

y tewse of software components

« Fixing an srror in ce unit invalves autematically the whols group of the
thras units

« An impact anslyss of planned changes is dificult

Case 2 represents three units forming an acyclie directed
dependency graph. It is now possible to assign level numbers
The following effects are the consequences:

« A clear understanding of the urst i achieved by having o clear order,

frst A, then 8 and then C.
« A claar testing cedr & obvious: frst tast unit A; tast continues with B
afterwards with C.

« In matter of reuse, possible to reuae A solated, A and B, oralso the

piete solution

«To fix a problem in unit A, it can be tested in sclation, whareby the test
verifies that the error is actually repaired. For tasting unit 8, only units B
A are naeded Subsequently, real integration tests can ba dane.

« An impact anslysis can easiy ba dane.

Please keep in mind that this is a very simple example. Many
software systems have hundreds of units. The more units you

have, the more important it becomes to be able to levelize
the dependency graph. Otherwise, maintenance becomes 8
nightmare

Coupling Metrics

Another important goal of dependency management is to
minimize the overall coupling between different parts of
the software. Lower coupling means higher flexibility, better
testability, better maintainability and better comprehensibility
Moreover, lower coupling also means that changes only affect
a smaller part of an application, which greatly raduces the
probability for regression bugs.

To control coupling, it is necessary to measure it. [LSD]
describes two useful coupling metrics. Average Component
Dependency (ACD) is telling us en how many components a
randormly picked component will depend upon on average
(including itself). Normalized Cumulative Component
Dependency (NCCD) is comparing the coupling of &
dependency graph (spplication) with the coupling of a
balanced binary tree

Gragh 1 CCD-23) Graph 2(CCO=19)

Above, you see two dependency graphs. The numbers
inside of the components reflect the number of components
reachable from the given component (including itself). The
value is ealled Component Dependency (CD). If you add up all
the numbers in the Graph 1 the sum s 23. This value is called
“Cumulative Component Dependency” (CCD). If you divide
CCD by the number of components in the graph, you get ACD
For Graph 1, this value would be 329

Please note that Graph 1 contains a cyclic dependency.
In Graph 2, removing the dependency shown in red has broken
the cycle, which reduces the CCD to 19 and ACD to 271 As
you can see, breaking cycles definitely helps to achieve our
second goal, which is the overall reduction of coupling.

NCCD is caleulated by dividing the CCD value of a
dependency graph through the CCD value of & balanced
binary tree with the same number of nodes. Its advantage
over ACD is that the metric value does not need to be putin
relation to the number of nodes in the graph. An ACD of S0 is

DZone, Inc. | www.dzone.com

DZone, Inc.

© 2005-2012, hello2morrow

| www.dzone.com

28

HELLOZMORROW

Relevant White-Papers

HELLO2MORROW

Project Sanity Check

st

Alexander von Zitzewitz
hello2morrow Inc.

“If you don't know where you're going,
you're unlikely to end up there.” - Forrest
Gump

Overview

if you are or feel responsible for a non-
trivial software project with 3 or more
people working on it and want to make it
a smashing success, this document is for
you. It will ask a couple of simple
questions about your project, that you
should be able to answer with a clear
“yes”. If your answer is “no” or “maybe” it
gives you ideas how you might come to a
“yes®.

‘The list might contain silly questions, but
the purpose of a checkiistis to check
even trvial things. It happened in the past
and it will probably happen again in the
future that multi-million dollar softwar
projects fail because somebody forgot to
ask some of the siller questions in this.
list at the beginning of the project.

‘The document s splitinto several
sections covering organizational and
technical aspects of a project. E\

section contains a couple of questions
that you should be able to answer with a
yes.

Project Organization

Are you using any kind of a
‘methodology or
process?

This can be Scrum [SCR], l, any variant of
agile processes, any variant of RUP
[RUP], Kanban [KAN] or even something
you invented yourself, The main purpose
of a development methodology is to
organize work into manageable units and
10 enable you to track the progress. It

also helps with risk assessment and
management by identifying the most risky
and/or difficult parts of the project.
Usually those are the ones you want to
address first.

Another advantage is that modern
methodologies have formalized points of
communication where team members
can address problems and discuss
solutions for those problems on a regular
base.

If you don't have a process you might
want to have a look at agile processes
like Scrum or Kanbas. Nowadays almost
everybody agrees that your development
process should be an iterative process
with iterations not lasting longer than 4
weeks. At the end of every teration there
should be a presentable result in form of
implemented project features.

Page 1

Download from www.hello2morrow.com

11/7/12

W

R
/S

The Value of Architecture

Alexander von Zitzewitz
hello2morrow Inc.

“If builders built buildings the way
‘programmers wrote programs, then the
first woodpecker that came along would
destroy civilzation.” - Gerald Weinberg
Overview

Software architecture has value in itself
and is a critical factor determining the
total cost, maintainability and success of
asoftware development project. Bul in
reality many software projects fail o

never reach their true potential due o the
erosion or lack of architecture.

After describing minimal requirements for

designing and maintaining an architecture

this paper will highlight the areas where
architecture provides real value for a
software project. It will also look at
software architecture in the context of an
agile project.

In the scope of this paper | define
(software-) architecture as the
decomposition of a software system into
‘smaller manageable units (called
architectural artifacts) and establishing
rules defining allowed and forbidden
dependencies between those arifacts.
‘The artifacts on the highest level can be
decomposed again into smaller lower-
level artifacts and

number of allowed dependencies
between artifacts and never allows cyclic
dependencies between artifacts. The
architecture therefore describes the
large-scale structure of a software

Designing an Architecture

The next logical step after gathering the

initial requirements for a project is the

design ofan ntal archtoctrs, ik s

ten impossible to gather all

mqulwmamx at the beginning of a

project, it is also not necessary to have a

complete architecture that descrives

every detail and aspect of the system
before coding begins. But a couple of
important questions have to be answered
upfront:

+ What are the major components of my
system and how do they depend on
each other? (These are your
architectural artifacts on the highest
level)

+ How do | organize my code?

- How do | build my system?

+ What will be the artifacts created by the
build?

s 9
on recursively untilthe typical size of an
artifact is small enough so that it can be
casiy malntained and undersioad by a
single person. A good software
architecture always tries to minimize the

+ Howdo |)
generalfunctionslty s persistence,
logging, authentication

What is my general mmwgy
" tochrical layering, .6, whare do | put

Page 1

© 2005-2012, hello2morrow

RN
F1e(3) es G = 03003192
Ferfge §(@fr-a
ctzwastr-a
fie s G- Gewen

262 25902963

o AP 43927

(e (g e
AT AT

31243y
o002tz §

ARCHITECTURE TODAY

Enabling Agility
Through
Architecture

Nanette Brown, Robert Nord, Ipek Ozkaya
Software Enginceing Istiute, Camegie Mellon Universiy

monts phase, an achtocture phase is conducted fo dovtop
s compranensie undering tochicalinfrastucture, Wik
the Watertallmodel, once the architectue i implomentod,
Enhancement Agiity can be achieved, provced that the emer-
gent user noeds ft wihin the boundares anticipated during
tne requrements prase.

 taking the Waterfall approach presents two pofen-
) prodloms. First when warking n @ now, urknon
protiom s, buicing an achiectual ot ey
anticipates al uturo noeds s an exremely dffcut undertak-
ing. Secondiy unce the Wateral paracigm, consieratie ofort

I contrast to Wiatefall metrodologies, Agle softwire
eveiopment methods focus on deiveng cbsenabe bereits
totho end users trough working software, oary and ofien. A
backog of functionsl “user stories” s crested, These siaries
e pricritzes by end users and/or the product owner,actng
5 the user schocate. Developmen teams raw siores from
the backiog and implement them in accordance wih an end-
user prioiizaton scheme. The Agée communitys focus
continuous delivery of user-alued stoiesis another means of
achieving Ennancement Agiity However, s approach aso
nas s shortfals,stemming mainly from an inacquate focus
‘on dependency anaiysis.

Incival stores camnot bo regarded i sciaton, Stries
nave dependencies on other sores. I Software by Numbers,
Denne and CelancHuang use the term greedy aigorthm’
torefer 1o a prioitzaton scheme which focuses strcty 0n
mplementng the sterywih the hghest mmedate value (4]

Thus, ly optimizing value o he user requres feams f0look
‘anead and anticate fulure neecs
far aehtoctual

gy
Systoms to emerging noads. Amongst all the enthusiasm for usi

Agilc practices to moat these needs, the critcal 1 of the underying
architocture is often ovoriooked.

elamerts of e systen. These dependences exist regardess.
of domain stabity or techrical matury. Trey exist rogardess
of whether the systom s in s nfl Covelopment stages or

s boen deployod and has been n he fied for severa yours.
The abf to dentty and analyze architecturel dopendences

and

e Engreerng:
"Gt me an B0% soluton NOW rather than & 100% soiu-
on two yoars rom now and help me inovate inthe feid (1)

gty tis our hess that without Archtectursl Agiiy, En-
nancement Agiy cannot be ressly sustaned

practices (2) (3} curwitnin both the Watefal and the Age ifecycle modo's
adjustng tion & Justin-time’ modet tres
of raw foat
peradiy
merfacng o0
e over
P 9 r

P ———

29

e

HELLOZMORROW

%Y

¢ 4 V.
R v T S ez

Awards and nominations

O Second prize of Jax innovation award in April 2007
© Nomination for European ICT prize 2007
O Awarded as most exciting innovation on Systems 2005

Innovation Area Award
SYSTEMS 2005

URKUNDE
fur

die spannendste Innovation

THE EUROPEAN

ICT

PRIZE
NOMINEE

Jaxo; SaSe

15:37 © 2005-2011, hello2morrow 30

tr-1 'E. . : e “ ‘
s S Wo : /
A a.‘ﬁ‘ T §; th‘qs 5 /

e s %

VA 1243y l’/’
aEt g o | SN ‘-« 219%2 i

. HELLOZMORROW

Q&A

Some of our more than 300 customers:

SIEMENS 'H'H' y;oﬁBﬁ @ KUHNE - NAGEL COMMERZBANK &'~

L

Standard & m —
Chartered & sanofi aventis DAIMLER-BENZ Deutsche Bank /
CREDITSUISSE\ * _ i - -Systems- .

Capgemini

. HELLOZMORROW

11/7/12

1r-4 'E. e —y “ ‘
2 e A)
"F“" g 5‘ %}‘A‘iﬁ %

VR 1243% l’/‘
_.' g o | SN ‘-« 2469%2 i

My Email Address:

a.zitzewitz@hello2morrow.com

Win a brand new IPad by visiting our booth
And watch a demo of Sonargraph

© 2005-2012, hello2morrow 32

