
Data Infrastructure @ LinkedIn (v2)

1

Sid Anand
QCon NY (June 2012)

What Do I Mean by V2?

2

*
V2 == version of this talk, not version of our architecture.

Version 1 of this talk
•  Presented at QCon London (March 2012)

•  http://www.infoq.com/presentations/Data-Infrastructure-LinkedIn

Version 2 – i.e. this talk
•  Contains some overlapping content
•  Introduces Espresso, our new NoSQL database

For more information on what LinkedIn Engineering is doing, feel free to
follow @LinkedInEng

@r39132 2

About Me

3

*
Current Life…
  LinkedIn

  Site Ops
  Web (Software) Engineering

  Search, Network, and Analytics (SNA)
  Distributed Data Systems (DDS)

  Me (working on analytics projects)

In Recent History…
  Netflix, Cloud Database Architect (4.5 years)
  eBay, Web Development, Research Labs, & Search Engine (4 years)

@r39132 3

Let’s Talk Numbers!

4 @r39132 4

The world’s largest professional network
Over 60% of members are outside of the United States

*as of March 31, 2012

5

2 4
8

17

32

55

90

2004 2005 2006 2007 2008 2009 2010

LinkedIn Members (Millions)

161M+ * 82%
Fortune 100 Companies
use LinkedIn to hire

*

Company Pages

>2M *

Professional searches in 2011

~4.2B
Languages

17

@r39132 5

*

Our Architecture

6 @r39132 6

Overview

•  Our site runs primarily on Java, with some use of Scala for specific

infrastructure

•  What runs on Scala?
•  Network Graph Service
•  Kafka

•  Most of our services run on Apache Traffic Server + Jetty

LinkedIn : Architecture	

@r39132 7

A A B B

Oracle

C C

A A B B C C

Presentation Tier

Business Tier

Data Access Tier

Data Infrastructure
Oracle Oracle Oracle

Memcached

  A web page requests
information A and B

  A thin layer focused on

building the UI. It assembles
the page by making parallel
requests to the BT

  Encapsulates business
logic. Can call other BT
clusters and its own DAT
cluster.

  Encapsulates DAL logic

  Concerned with the
persistent storage of and
easy access to data

LinkedIn : Architecture	

@r39132 8

A A B B

Oracle

C C

A A B B C C

Presentation Tier

Business Tier

Data Access Tier

Data Infrastructure
Oracle Oracle Oracle

Memcached

  A web page requests
information A and B

  A thin layer focused on

building the UI. It assembles
the page by making parallel
requests to the BT

  Encapsulates business
logic. Can call other BT
clusters and its own DAT
cluster.

  Encapsulates DAL logic

  Concerned with the
persistent storage of and
easy access to data

LinkedIn : Architecture	

@r39132 9

Data Infrastructure Technologies

10 @r39132 10

Oracle: Source of Truth for User-Provided Data

LinkedIn Data Infrastructure Technologies

11 @r39132

12

Oracle
•  Until recently, all user-provided data was stored in Oracle – our source of truth

•  Espresso is ramping up
•  About 50 Schemas running on tens of physical instances
•  With our user base and traffic growing at an accelerating pace, how do we scale

Oracle for user-provided data?

Scaling Reads
•  Oracle Slaves
•  Memcached
•  Voldemort – for key-value lookups

Scaling Writes
•  Move to more expensive hardware or replace Oracle with something better

Oracle : Overview	

@r39132 12

Voldemort: Highly-Available Distributed Data Store

LinkedIn Data Infrastructure Technologies

13 @r39132

14

•  A distributed, persistent key-value store influenced by the Amazon Dynamo paper

•  Key Features of Dynamo
  Highly Scalable, Available, and Performant
  Achieves this via Tunable Consistency

•  Strong consistency comes with a cost – i.e. lower availability and higher response times
•  The user can tune this to his/her needs

  Provides several self-healing mechanisms when data does become inconsistent
•  Read Repair

  Repairs value for a key when the key is looked up/read
•  Hinted Handoff

  Buffers value for a key that wasn’t successfully written, then writes it later
•  Anti-Entropy Repair

  Scans the entire data set on a node and fixes it

  Provides means to detect node failure and a means to recover from node failure
•  Failure Detection
•  Bootstrapping New Nodes

Voldemort : Overview	

@r39132

15

Voldemort-specific Features
  Implements a layered, pluggable

architecture

  Each layer implements a common interface
(c.f. API). This allows us to replace or
remove implementations at any layer

•  Pluggable data storage layer
  BDB JE, Custom RO storage,

etc…

•  Pluggable routing supports
  Single or Multi-datacenter routing

API
 VectorClock<V> get (K key)
 put (K key, VectorClock<V> value)
 applyUpdate(UpdateAction action, int retries)

Voldemort : Overview	

Client API
Conflict Resolution

Serialization
Repair Mechanism

Failure Detector
Routing

Repair Mechanism
Failure Detector

Routing
Storage Engine

Admin

Layered, Pluggable Architecture

Client

Server

@r39132

16

Voldemort-specific Features

•  Supports Fat client or Fat Server

•  Repair Mechanism + Failure
Detector + Routing can run on
server or client

•  LinkedIn currently runs Fat Client, but we
would like to move this to a Fat Server
Model

Voldemort : Overview	

Client API
Conflict Resolution

Serialization
Repair Mechanism

Failure Detector
Routing

Repair Mechanism
Failure Detector

Routing
Storage Engine

Admin

Layered, Pluggable Architecture

Client

Server

@r39132

Where Does LinkedIn use
Voldemort?

17 @r39132 17

2 Usage-Patterns

  Read-Write Store

–  A key-value alternative to Oracle
–  Uses BDB JE for the storage engine
–  50% of Voldemort Stores (aka Tables) are RW

  Read-only Store
–  Uses a custom Read-only format
–  50% of Voldemort Stores (aka Tables) are RO

  Let’s look at the RO Store

18

Voldemort : Usage Patterns @ LinkedIn	

@r39132

Voldemort : RO Store Usage at LinkedIn	

People You May Know	

LinkedIn Skills	

Related Searches	
Viewers of this profile also viewed	

Events you may be interested in	
 Jobs you may be
interested in	

@r39132 19

RO Store Usage Pattern
1.  We schedule a Hadoop job to build a table (called “store” in Voldemort-speak)

2.  Azkaban, our Hadoop scheduler, detects Hadoop job completion and tells Voldemort to fetch the new data
and index files

3.  Voldemort fetches the data and index files in parallel from HDFS. Once fetch completes, swap indexes!

4.  Voldemort serves fast key-value look-ups on the site
–  e.g. For key=“Sid Anand”, get all the people that “Sid Anand” may know!
–  e.g. For key=“Sid Anand”, get all the jobs that “Sid Anand” may be interested in!

20

Voldemort : Usage Patterns @ LinkedIn	

@r39132

How Do The Voldemort RO
Stores Perform?

21 @r39132 21

Voldemort : RO Store Performance : TP vs. Latency	

throughput (qps)

la
te

nc
y

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

median

● ●

●
● ●

●

●

●
●

●

●

● ●

●

●

100 200 300 400 500 600 700

0

50

100

150

200

250

99th percentile

●
● ●

● ●
●

●

● ●
●

●

●
●

●
●

100 200 300 400 500 600 700

● MySQL ● Voldemort

throughput (qps)

la
te

nc
y

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

median

● ●

●
● ●

●

●

●
●

●

●

● ●

●

●

100 200 300 400 500 600 700

0

50

100

150

200

250

99th percentile

●
● ●

● ●
●

●

● ●
●

●

●
●

●
●

100 200 300 400 500 600 700

● MySQL ● Voldemort

100 GB data, 24 GB RAM 	

throughput (qps)

la
te

nc
y

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

median

● ●

●
● ●

●

●

●
●

●

●

● ●

●

●

100 200 300 400 500 600 700

0

50

100

150

200

250

99th percentile

●
● ●

● ●
●

●

● ●
●

●

●
●

●
●

100 200 300 400 500 600 700

● MySQL ● Voldemort

throughput (qps)

la
te

nc
y

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

median

● ●

●
● ●

●

●

●
●

●

●

● ●

●

●

100 200 300 400 500 600 700

0

50

100

150

200

250

99th percentile

●
● ●

● ●
●

●

● ●
●

●

●
●

●
●

100 200 300 400 500 600 700

● MySQL ● Voldemort

@r39132 22

Databus : Timeline-Consistent Change Data Capture

LinkedIn Data Infrastructure Solutions

23 @r39132

Where Does LinkedIn use
Databus?

24 @r39132 24

25

Databus : Use-Cases @ LinkedIn	

Oracle
Data Change Events

Search
Index

Graph
Index

Read
Replicas

U
pdates

Standard
ization

A user updates his profile with skills and position history. He also accepts a connection

•  The write is made to an Oracle Master and Databus replicates:
•  the profile change to the Standardization service

  E.G. the many (actually 40) forms of IBM are canonicalized for search-friendliness and
recommendation-friendliness

•  the profile change to the Search Index service
  Recruiters can find you immediately by new keywords

•  the connection change to the Graph Index service
  The user can now start receiving feed updates from his new connections immediately

@r39132

Databus Architecture

26 @r39132 26

Relay
Event Win

27

DB

Bootstrap

Capture
Changes

On-line
Changes

DB

Databus consists of 2 components
•  Relay Service

•  “Relays” DB changes to
subscribers as they happen in
Oracle

•  Uses a sharded, in-memory,
circular buffer

•  Very fast, but has limited amount of
buffered data!

•  Bootstrap Service
•  Serves historical data to

subscribers who have fallen behind
on the latest data from the “relay”

•  Not as fast as the relay, but has
large amount of data buffered on
disk

Databus : Architecture	

@r39132

Relay
Event Win

28

DB

Bootstrap

Capture
Changes

On-line
Changes

On-line
Changes

DB

Consolidated

Delta Since T

Consistent
Snapshot at U

Consumer 1

Consumer n

D
at

ab
us

C

lie
nt

 L
ib

Client

Consumer 1

Consumer n

D
at

ab
us

C

lie
nt

 L
ib

Client

Databus : Architecture	

@r39132

  Generate consistent snapshots and consolidated deltas
during continuous updates

29

Relay
Event Win

Read
Changes

Log Writer

Log Applier

Bootstrap server

Log Storage Snapshot Storage

Server Read
recent events

Consumer 1

Consumer n

D
at

ab
us

C

lie
nt

 L
ib

Client

Bootstrap

Replay
events

Databus : Architecture - Bootstrap	

@r39132

Read
Online
Changes

Espresso: Indexed Timeline-Consistent Distributed
Data Store

LinkedIn Data Infrastructure Technologies

30 @r39132

Why Do We Need Yet Another
NoSQL DB?

31 @r39132 31

32

What is Oracle Missing?

•  (Infinite) Incremental Scalability
•  Adding 50% more resources gives us 50% more scalability (e.g. storage and serving

capacity, etc…). In effect, we do not want to see diminishing returns

•  Always Available
•  Users of the system do not perceive any service interruptions

•  Adding capacity or doing any other maintenance does not incur downtime
•  Node failures do not cause downtime

•  Operational Flexibility and Cost Control
•  No recurring license fees
•  Runs on commodity hardware

•  Simplified Development Model
•  E.g. Adding a column without running DDL ALTER TABLE commands

Espresso: Overview	

@r39132

33

What Features Should We Retain from Oracle?
•  Limited Transactions : Constrained Strong Consistency

•  We need consistency within an entity (more on this later)

•  Ability to Query by Fields other than the Primary Key
•  a.k.a. non-PK columns in RDBMS

•  Must Feed a Change Data Capture system
•  i.e. can act as a Databus Source
•  Recall that a large ecosystem of analytic services are fed by the Oracle-Databus pipe. We

need to continue to feed that ecosystem

Espresso: Overview	

@r39132

Guiding Principles when replacing a system (e.g. Oracle)
•  Strive for Usage Parity, not Feature Parity

•  In other words, first look at how you use Oracle and look for those features in candidate
systems. Do not look for general feature parity between systems.

•  Don’t shoot for a full replacement
•  Buy yourself headroom by migrating the top K use-cases by load off Oracle. Leave the

others.

What Does the API Look Like?

34 @r39132 34

35

Espresso: API Example	

@r39132

Consider the User-to-User Communication Case at LinkedIn
•  Users can view

•  Inbox, sent folder, archived folder, etc….

•  On social networks such as LinkedIn and Facebook, user-to-user messaging consumes substantial database
resources in terms of storage and CPU (e.g. activity)

•  At LinkedIn 40% of Host DB CPU estimated to serve U2U Comm
•  Footnote : Facebook migrated their messaging use-case to HBase

•  We’re moving this off Oracle to Espresso

36

Espresso: API Example	

@r39132

Database and Tables
•  Imagine that you have a Mailbox Database containing tables needed for the U2U Communications case
•  The Mailbox Database contains the following 3 tables:

•  Message_Metadata – captures subject text
•  Primary Key = MemberId & MsgId

•  Message_Details – captures full message content
•  Primary Key = MemberId & MsgId

•  Mailbox_Aggregates – captures counts of read/unread & total
•  Primary Key = MemberId

Example Read Request
Espresso supports REST semantics.

To get unread and total email count for “bob”, issue
a request of the form:
•  GET /<database_name>/<table_name>/

<resource_id>
•  GET /Mailbox/Mailbox_Aggregates/bob

37

Espresso: API Example	

@r39132

Collection Resources vs. Singleton Resources
A resource identified by a resource_id may be either a singleton or a collection

Examples (Read)
  For singletons, the URI refers to an individual resource.

–  GET /<database_name>/<table_name>/<resource_id>
–  E.g.: Mailbox_Aggregates table

  To get unread and total email count for “bob”, issue a request of the form:
–  GET /Mailbox/Mailbox_Aggregates/bob

  For collections, a secondary path element defines individual resources within the collection
•  GET /<database_name>/<table_name>/<resource_id>/<subresource_id>
•  E.g.: Message_Metadata & Message_Details tables

•  To get all of “bob’s” mail metadata, specify the URI up to the <resource_id>
•  GET /Mailbox/Message_Metadata/bob

•  To display one of “bob’s” messages in its entirety, specify the URI up to the
<subresource_id>

•  GET /Mailbox/Message_Details/bob/4

What Does the Architecture Look
Like?

38 @r39132 38

39

•  Components
•  Request Routing Tier

•  Stateless
•  Accepts HTTP request
•  Consults Cluster Manager to

determine master for partition
•  Forwards request to appropriate

storage node
•  Storage Tier

•  Data Store (e.g. MySQL)
•  Data is semi-structured (e.g. Avro)
•  Local Secondary Index (Lucene)

•  Cluster Manager
•  Responsible for data set

partitioning
•  Notifies Routing Tier of partition

locations for a data set
•  Monitors health and executes

repairs on an unhealthy cluster
•  Relay Tier

•  Replicates changes in commit
order to subscribers (uses
Databus)

Espresso: Architecture	

@r39132

Next Steps for Espresso

40 @r39132 40

41

Espresso: Next Steps	

@r39132

Key Road Map Items

•  Internal Rollout for more use-cases within LinkedIn

•  Development
•  Active-Active across data centers
•  Global Search Indexes : “<resource_id>?query=…” for singleton resources as well
•  More Fault Tolerance measures in the Cluster Manager (Helix)

•  Open Source Helix (Cluster Manager) in Summer of 2012
•  Look out of an article in High Scalability

•  Open Source Espresso in the beginning of 2013

Presentation & Content
  Tom Quiggle (Espresso) @TomQuiggle
  Kapil Surlaker (Espresso) @kapilsurlaker
  Shirshanka Das (Espresso) @shirshanka
  Chavdar Botev (Databus) @cbotev
  Roshan Sumbaly (Voldemort) @rsumbaly
  Neha Narkhede (Kafka) @nehanarkhede

A Very Talented Development Team
Aditya Auradkar, Chavdar Botev, Antony Curtis, Vinoth Chandar, Shirshanka Das, Dave
DeMaagd, Alex Feinberg, Phanindra Ganti, Mihir Gandhi, Lei Gao, Bhaskar Ghosh, Kishore
Gopalakrishna, Brendan Harris, Todd Hendricks, Swaroop Jagadish, Joel Koshy, Brian
Kozumplik, Kevin Krawez, Jay Kreps, Shi Lu, Sunil Nagaraj, Neha Narkhede, Sasha
Pachev, Igor Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian,
Oliver Seeliger, Rupa Shanbag, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Subbu
Subramaniam, Roshan Sumbaly, Kapil Surlaker, Sajid Topiwala, Cuong Tran, Balaji
Varadarajan, Jemiah Westerman, Zhongjie Wu, Zach White, Yang Ye, Mammad Zadeh,
David Zhang, and Jason Zhang

42

Acknowledgments	

@r39132

y Questions?

43 @r39132 43

