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What Do I Mean by V2? 
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* 
V2 == version of this talk, not version of our architecture. 
 
Version 1 of this talk 
•  Presented at QCon London (March 2012) 

•  http://www.infoq.com/presentations/Data-Infrastructure-LinkedIn  

Version 2 – i.e. this talk 
•  Contains some overlapping content 
•  Introduces Espresso, our new NoSQL database 
 
 
For more information on what LinkedIn Engineering is doing, feel free to 
follow @LinkedInEng 
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About Me 
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* 
Current Life… 
  LinkedIn 

  Site Ops 
  Web (Software) Engineering 

  Search, Network, and Analytics (SNA) 
  Distributed Data Systems (DDS) 

  Me (working on analytics projects) 

In Recent History… 
  Netflix, Cloud Database Architect (4.5 years) 
  eBay, Web Development, Research Labs, & Search Engine (4 years) 
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Let’s Talk Numbers! 
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The world’s largest professional network 
Over 60% of members are outside of the United States 

*as of March 31, 2012 
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Our Architecture 
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Overview 
 
•  Our site runs primarily on Java, with some use of Scala for specific 

infrastructure 

•  What runs on Scala? 
•  Network Graph Service  
•  Kafka  
 

•  Most of our services run on Apache Traffic Server + Jetty 

LinkedIn :  Architecture	
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Oracle 
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Presentation Tier 

Business Tier 

Data Access Tier 

Data Infrastructure 
Oracle Oracle Oracle 

Memcached 

  A web page requests 
information A and B 

 
 
  A thin layer focused on 

building the UI. It assembles 
the page by making parallel 
requests to the BT 

  Encapsulates business 
logic. Can call other BT 
clusters and its own DAT 
cluster.  

  Encapsulates DAL logic 
 

  Concerned with the 
persistent storage of and 
easy access to data  

LinkedIn :  Architecture	
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Data Infrastructure Technologies 

10 @r39132 10 



Oracle: Source of Truth for User-Provided Data 
 

LinkedIn Data Infrastructure Technologies 
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*** 

Oracle 
•  Until recently, all user-provided data was stored in Oracle – our source of truth 

•  Espresso is ramping up 
•  About 50 Schemas running on tens of physical instances 
•  With our user base and traffic growing at an accelerating pace, how do we scale 

Oracle for user-provided data? 

Scaling Reads 
•  Oracle Slaves 
•  Memcached  
•  Voldemort – for key-value lookups 

Scaling Writes 
•  Move to more expensive hardware or replace Oracle with something better 

Oracle : Overview	
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Voldemort: Highly-Available Distributed Data Store 
 

LinkedIn Data Infrastructure Technologies 
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•  A distributed, persistent key-value store influenced by the Amazon Dynamo paper 

•  Key Features of Dynamo 
  Highly Scalable, Available, and Performant 
  Achieves this via Tunable Consistency 

•  Strong consistency comes with a cost – i.e. lower availability and higher response times 
•  The user can tune this to his/her needs 

  Provides several self-healing mechanisms when data does become inconsistent 
•  Read Repair  

  Repairs value for a key when the key is looked up/read 
•  Hinted Handoff 

  Buffers value for a key that wasn’t successfully written, then writes it later 
•  Anti-Entropy Repair 

  Scans the entire data set on a node and fixes it 

  Provides means to detect node failure and a means to recover from node failure 
•  Failure Detection 
•  Bootstrapping New Nodes 

 

 

Voldemort : Overview	
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Voldemort-specific Features 
  Implements a layered, pluggable 

architecture 

  Each layer implements a common interface 
(c.f. API). This allows us to replace or 
remove implementations at any layer 

•  Pluggable data storage layer  
  BDB JE, Custom RO storage, 

etc… 

•  Pluggable routing supports 
  Single or Multi-datacenter routing 

API 
 VectorClock<V> get (K key) 
 put (K key, VectorClock<V> value)  
 applyUpdate(UpdateAction action, int retries) 

Voldemort : Overview	



Client API 
Conflict Resolution 

Serialization 
Repair Mechanism 

Failure Detector 
Routing 

Repair Mechanism 
Failure Detector 

Routing 
Storage Engine 

Admin 

Layered, Pluggable Architecture 

Client 

Server 
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Voldemort-specific Features 

•  Supports Fat client or Fat Server 

•  Repair Mechanism + Failure 
Detector + Routing can run on 
server or client 

•  LinkedIn currently runs Fat Client, but we 
would like to move this to a Fat Server 
Model 

Voldemort : Overview	
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Routing 

Repair Mechanism 
Failure Detector 

Routing 
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Layered, Pluggable Architecture 

Client 
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Where Does LinkedIn use 
Voldemort? 
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2 Usage-Patterns 
 
  Read-Write Store 

–  A key-value alternative to Oracle 
–  Uses BDB JE for the storage engine 
–  50% of Voldemort Stores (aka Tables) are RW 

  Read-only Store 
–  Uses a custom Read-only format 
–  50% of Voldemort Stores (aka Tables) are RO 

  Let’s look at the RO Store 

18 

Voldemort :  Usage Patterns @ LinkedIn	
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Voldemort : RO Store Usage at LinkedIn	



People You May Know	



LinkedIn Skills	



Related Searches	

Viewers of this profile also viewed	



Events you may be interested in	

 Jobs you may be 
interested in	
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RO Store Usage Pattern 
1.  We schedule a Hadoop job to build a table (called “store” in Voldemort-speak) 

2.  Azkaban, our Hadoop scheduler, detects Hadoop job completion and tells Voldemort to fetch the new data 
and index files 

3.  Voldemort fetches the data and index files in parallel from HDFS. Once fetch completes, swap indexes! 

4.  Voldemort serves fast key-value look-ups on the site 
–  e.g. For key=“Sid Anand”, get all the people that “Sid Anand” may know! 
–  e.g. For key=“Sid Anand”, get all the jobs that “Sid Anand” may be interested in! 

20 

Voldemort :  Usage Patterns @ LinkedIn	
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How Do The Voldemort RO 
Stores Perform?  
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Voldemort : RO Store Performance : TP vs. Latency	
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Databus : Timeline-Consistent Change Data Capture 
 

LinkedIn Data Infrastructure Solutions 
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Where Does LinkedIn use 
Databus? 
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Databus : Use-Cases @ LinkedIn	



Oracle 
Data Change Events 

Search 
Index 

Graph 
Index 

Read 
Replicas 

U
pdates 

Standard
ization 

A user updates his profile with skills and position history. He also accepts a connection 

•  The write is made to an Oracle Master and Databus replicates: 
•  the profile change to the Standardization service 

  E.G. the many (actually 40) forms of IBM are canonicalized for search-friendliness and 
recommendation-friendliness 

•  the profile change to the Search Index service 
  Recruiters can find you immediately by new keywords 

•  the connection change to the Graph Index service 
  The user can now start receiving feed updates from his new connections immediately 
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Databus Architecture 
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Relay 
Event Win 

27 

DB 

Bootstrap 

Capture 
Changes 

On-line 
Changes 

DB 

Databus consists of 2 components 
•  Relay Service 

•  “Relays” DB changes to 
subscribers as they happen in 
Oracle 

•  Uses a sharded, in-memory, 
circular buffer 

•  Very fast, but has limited amount of 
buffered data! 

•  Bootstrap Service 
•  Serves historical data to 

subscribers who have fallen behind 
on the latest data from the “relay” 

•  Not as fast as the relay, but has 
large amount of data buffered on 
disk 

Databus :  Architecture	
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Relay 
Event Win 
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Databus :  Architecture	
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  Generate consistent snapshots and consolidated deltas 
during continuous updates 
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Relay 
Event Win 

Read 
Changes 

Log Writer 

Log Applier 

Bootstrap server 

Log Storage Snapshot Storage 

Server Read 
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Databus :  Architecture - Bootstrap	
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Espresso: Indexed Timeline-Consistent Distributed 
Data Store 
 

LinkedIn Data Infrastructure Technologies 
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Why Do We Need Yet Another 
NoSQL DB? 
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What is Oracle Missing? 

•  (Infinite) Incremental Scalability   
•  Adding 50% more resources gives us 50% more scalability (e.g. storage and serving 

capacity, etc…). In effect, we do not want to see diminishing returns 

•  Always Available  
•  Users of the system do not perceive any service interruptions 

•  Adding capacity or doing any other maintenance does not incur downtime 
•  Node failures do not cause downtime 

•  Operational Flexibility and Cost Control 
•  No recurring license fees  
•  Runs on commodity hardware 

•  Simplified Development Model 
•  E.g. Adding a column without running DDL ALTER TABLE commands 

 

 

Espresso:  Overview	
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What Features Should We Retain from Oracle? 
•  Limited Transactions : Constrained Strong Consistency 

•  We need consistency within an entity (more on this later) 

•  Ability to Query by Fields other than the Primary Key 
•  a.k.a. non-PK columns in RDBMS 

•  Must Feed a Change Data Capture system 
•  i.e. can act as a Databus Source 
•  Recall that a large ecosystem of analytic services are fed by the Oracle-Databus pipe. We 

need to continue to feed that ecosystem 
 

Espresso:  Overview	
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Guiding Principles when replacing a system (e.g. Oracle) 
•  Strive for Usage Parity, not Feature Parity 

•  In other words, first look at how you use Oracle and look for those features in candidate 
systems. Do not look for general feature parity between systems. 

•  Don’t shoot for a full replacement 
•  Buy yourself headroom by migrating the top K use-cases by load off Oracle. Leave the 

others. 

 



 

What Does the API Look Like? 
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Espresso:  API Example	
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Consider the User-to-User Communication Case at LinkedIn 
•  Users can view  

•  Inbox, sent folder, archived folder, etc…. 

•  On social networks such as LinkedIn and Facebook, user-to-user messaging consumes substantial database 
resources in terms of storage and CPU (e.g. activity) 

•  At LinkedIn 40% of Host DB CPU estimated to serve U2U Comm 
•  Footnote : Facebook migrated their messaging use-case to HBase 

•  We’re moving this off Oracle to Espresso 
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Espresso:  API Example	
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Database and Tables 
•  Imagine that you have a Mailbox Database containing tables needed for the U2U Communications case 
•  The Mailbox Database contains the following 3 tables: 

•  Message_Metadata – captures subject text 
•  Primary Key = MemberId & MsgId 

•  Message_Details – captures full message content 
•  Primary Key = MemberId & MsgId 

•  Mailbox_Aggregates – captures counts of read/unread & total 
•  Primary Key = MemberId 

 
 
Example Read Request 
Espresso supports REST semantics.  
 
To get unread and total email count for “bob”, issue 
a request of the form:  
•  GET   /<database_name>/<table_name>/

<resource_id> 
•  GET   /Mailbox/Mailbox_Aggregates/bob 
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Espresso:  API Example	
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Collection Resources vs. Singleton Resources 
A resource identified by a resource_id may be either a singleton or a collection 

Examples (Read) 
  For singletons, the URI refers to an individual resource.   

–  GET   /<database_name>/<table_name>/<resource_id> 
–  E.g.: Mailbox_Aggregates table 

  To get unread and total email count for “bob”, issue a request of the form:  
–  GET   /Mailbox/Mailbox_Aggregates/bob 

  For collections, a secondary path element defines individual resources within the collection 
•  GET   /<database_name>/<table_name>/<resource_id>/<subresource_id> 
•  E.g.: Message_Metadata & Message_Details tables 

•  To get all of “bob’s” mail metadata, specify the URI up to the <resource_id> 
•  GET /Mailbox/Message_Metadata/bob 

•  To display one of “bob’s” messages in its entirety, specify the URI up to the 
<subresource_id> 

•  GET   /Mailbox/Message_Details/bob/4 



 

What Does the Architecture Look 
Like? 
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•  Components 
•  Request Routing Tier 

•  Stateless  
•  Accepts HTTP request 
•  Consults Cluster Manager to 

determine master for partition 
•  Forwards request to appropriate 

storage node 
•  Storage Tier 

•  Data Store (e.g. MySQL) 
•  Data is semi-structured (e.g. Avro) 
•  Local Secondary Index (Lucene) 

•  Cluster Manager 
•  Responsible for data set 

partitioning 
•  Notifies Routing Tier of partition 

locations for a data set 
•  Monitors health and executes 

repairs on an unhealthy cluster 
•  Relay Tier 

•  Replicates changes in commit 
order to subscribers (uses 
Databus) 

 
 
 

Espresso:  Architecture	
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Next Steps for Espresso 
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Espresso:  Next Steps	
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Key Road Map Items 
 
•  Internal Rollout for more use-cases within LinkedIn 

•  Development 
•  Active-Active across data centers 
•  Global Search Indexes : “<resource_id>?query=…” for singleton resources as well 
•  More Fault Tolerance measures in the Cluster Manager (Helix) 

•  Open Source Helix (Cluster Manager) in Summer of 2012 
•  Look out of an article in High Scalability 

•  Open Source Espresso in the beginning of 2013 
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