
1

Wednesday, October 6, 2010

2
Image credit: http://browsertoolkit.com/fault-tolerance.png

Wednesday, October 6, 2010

http://browsertoolkit.com/fault-tolerance.png
http://browsertoolkit.com/fault-tolerance.png

3
Image credit: http://browsertoolkit.com/fault-tolerance.png

Wednesday, October 6, 2010

http://browsertoolkit.com/fault-tolerance.png
http://browsertoolkit.com/fault-tolerance.png

4
Image credit: http://browsertoolkit.com/fault-tolerance.png

Wednesday, October 6, 2010

http://browsertoolkit.com/fault-tolerance.png
http://browsertoolkit.com/fault-tolerance.png

NOSQL
- an overview -
goto; con 2010

Emil Eifrem
CEO, Neo Technology

@emileifrem
emil@neotechnology.com

Wednesday, October 6, 2010

So what’s the plan?
๏Why NOSQL?

๏The NOSQL landscape

๏NOSQL challenges

๏Conclusion

6

Wednesday, October 6, 2010

First off: the name

7

๏WE ALL HATES IT, M’KAY?

Wednesday, October 6, 2010

NOSQL is NOT...

8

Wednesday, October 6, 2010

NOSQL is NOT...

๏ NO to SQL

8

Wednesday, October 6, 2010

NOSQL is NOT...

๏ NO to SQL

๏ NEVER SQL

8

Wednesday, October 6, 2010

Not Only SQL

9

NOSQL is simply

Wednesday, October 6, 2010

Wednesday, October 6, 2010

11

Four trends

NOSQL - Why now?

Wednesday, October 6, 2010

Trend 1:
data set size

Source: IDC 20072007
40

Wednesday, October 6, 2010

2007
40

2010

988

Source: IDC 2007

Trend 1:
data set size

Wednesday, October 6, 2010

Trend 2: Connectedness

141990

In
fo

rm
at

io
n

co
nn

ec
tiv

ity

2000 2010 2020

web 1.0 web 2.0 “web 3.0”

Wednesday, October 6, 2010

Trend 2: Connectedness

15

Text documents

1990

In
fo

rm
at

io
n

co
nn

ec
tiv

ity

2000 2010 2020

web 1.0 web 2.0 “web 3.0”

Wednesday, October 6, 2010

Trend 2: Connectedness

16

Text documents

1990

In
fo

rm
at

io
n

co
nn

ec
tiv

ity

Hypertext

2000 2010 2020

web 1.0 web 2.0 “web 3.0”

Wednesday, October 6, 2010

Trend 2: Connectedness

17

Text documents

1990

In
fo

rm
at

io
n

co
nn

ec
tiv

ity Folksonomies

Tagging

User-generated
content

Wikis

RSS

Blogs

Hypertext

2000 2010 2020

web 1.0 web 2.0 “web 3.0”

Wednesday, October 6, 2010

Trend 2: Connectedness

18

Text documents

1990

In
fo

rm
at

io
n

co
nn

ec
tiv

ity Folksonomies

Tagging

User-generated
content

Wikis

RSS

Blogs

Hypertext

2000 2010 2020

web 1.0 web 2.0 “web 3.0”

Ontologies

RDF

Giant
Global

Graph (GGG)

Wednesday, October 6, 2010

Trend 2: Connectedness

19

Text documents

1990

In
fo

rm
at

io
n

co
nn

ec
tiv

ity Folksonomies

Tagging

User-generated
content

Wikis

RSS

Blogs

Hypertext

2000 2010 2020

web 1.0 web 2.0 “web 3.0”

Ontologies

RDF

Giant
Global

Graph (GGG)

Wednesday, October 6, 2010

Trend 3: Semi-structure

20

๏ Individualization of content

• In the salary lists of the 1970s, all elements had exactly one job

• In the salary lists of the 2000s, we need 5 job columns! Or 8?
Or 15?

๏All encompassing “entire world views”

• Store more data about each entity

๏Trend accelerated by the decentralization of content generation
that is the hallmark of the age of participation (“web 2.0”)

Wednesday, October 6, 2010

Aside: RDBMS performance

21Data complexity

Pe
rfo

rm
an

ce

Relational database

Requirement of application

Wednesday, October 6, 2010

Aside: RDBMS performance

22Data complexity

Pe
rfo

rm
an

ce

Relational database

Requirement of application

Wednesday, October 6, 2010

Aside: RDBMS performance

23Data complexity

Pe
rfo

rm
an

ce

Salary List Relational database

Requirement of application

Wednesday, October 6, 2010

Aside: RDBMS performance

24Data complexity

Pe
rfo

rm
an

ce

Majority of
Webapps

Salary List Relational database

Requirement of application

Wednesday, October 6, 2010

Aside: RDBMS performance

25Data complexity

Pe
rfo

rm
an

ce

Majority of
Webapps

Social network

Semantic Trading

Salary List

}custom

Relational database

Requirement of application

Wednesday, October 6, 2010

Trend 4: Architecture

26

DB

Application

1980s: Application (<-- note lack of s)

Wednesday, October 6, 2010

Trend 4: Architecture

27

DB

Application

1990s: Database as integration hub

Application Application

Wednesday, October 6, 2010

DBDB DB

Trend 4: Architecture

28

Service

2000s: (moving towards) Decoupled services
with their own backend

Service Service

Wednesday, October 6, 2010

Why NOSQL Now?

๏Trend 1: Size

๏Trend 2: Connectedness

๏Trend 3: Semi-structure

๏Trend 4: Architecture

29

Wednesday, October 6, 2010

Four NOSQL categories

30

Wednesday, October 6, 2010

Category 1: Key-Value stores

31

๏Lineage:

• “Dynamo: Amazon’s Highly Available Key-Value Store” (2007)

๏Data model:

•Global key-value mapping

•Think: Globally available HashMap/Dict/etc

๏Examples:

• Project Voldemort

•Tokyo {Cabinet, Tyrant, etc}

Wednesday, October 6, 2010

Category 1: Key-Value stores

32

๏Strengths

• Simple data model

•Great at scaling out horizontally

๏Weaknesses:

• Simplistic data model

• Poor for complex data

Wednesday, October 6, 2010

Category II: ColumnFamily (BigTable) stores

33

๏Lineage:

• “Bigtable: A Distributed Storage System for Structured
Data” (2006)

๏Data model:

•A big table, with column families

๏Examples:

•HBase

•HyperTable

•Cassandra
Wednesday, October 6, 2010

http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html

Category III: Document databases

34

๏Lineage:

• Lotus Notes

๏Data model:

•Collections of documents

•A document is a key-value collection

๏Examples:

•CouchDB

•MongoDB

Wednesday, October 6, 2010

Document db: An example

35

๏How would we model a blogging software?

๏One stab:

•Represent each Blog as a Collection of Post documents

•Represent Comments as nested documents in the Post
documents

Wednesday, October 6, 2010

Document db: Creating a blog post

36

import com.mongodb.Mongo;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
// ...
Mongo mongo = new Mongo("localhost"); // Connect to MongoDB
// ...
DB blogs = mongo.getDB("blogs"); // Access the blogs database
DBCollection myBlog = blogs.getCollection("Thobe’s blog");

DBObject blogPost = new BasicDBObject();
blogPost.put("title", "JAOO^H^H^H^HGoto; con 2010");
blogPost.put("pub_date", new Date());
blogPost.put("body", "Publishing a post about JA...Goto con in

my MongoDB blog!");
blogPost.put("tags", Arrays.asList("conference", "names"));
blogPost.put("comments", new ArrayList());

myBlog.insert(blogPost);

Wednesday, October 6, 2010

Retrieving posts
// ...
import com.mongodb.DBCursor;
// ...

public Object getAllPosts(String blogName) {
DBCollection blog = db.getCollection(blogName);
return renderPosts(blog.find());

}

private Object renderPosts(DBCursor cursor) {
// order by publication date (descending)
cursor = cursor.sort(new BasicDBObject("pub_date", -1));
// ...

}

37

Wednesday, October 6, 2010

Category IV: Graph databases

38

๏Lineage:

• Euler and graph theory

๏Data model:

•Nodes with properties

•Typed relationships with properties

๏Examples:

• Sones GraphDB

• InfiniteGraph

•Neo4j
Wednesday, October 6, 2010

Property Graph model

39

Wednesday, October 6, 2010

Property Graph model

40

LIVES WITH
LOVES

OWNS
DRIVES

LOVES

Wednesday, October 6, 2010

Property Graph model

41

LIVES WITH
LOVES

OWNS
DRIVES

LOVES
name: “James”
age: 32
twitter: “@spam”

name: “Mary”
age: 35

brand: “Volvo”
model: “V70”

property type: “car”

Wednesday, October 6, 2010

Graphs are whiteboard friendly

42
Image credits: Tobias Ivarsson

An application domain model
outlined on a whiteboard or piece
of paper would be translated to
an ER-diagram, then normalized
to fit a Relational Database.
With a Graph Database the model
from the whiteboard is
implemented directly.

Wednesday, October 6, 2010

Graphs are whiteboard friendly

43

thobe

Wardrobe Strength

Joe project blog

Hello Joe

Neo4j performance analysis

Modularizing Jython

Image credits: Tobias Ivarsson

An application domain model
outlined on a whiteboard or piece
of paper would be translated to
an ER-diagram, then normalized
to fit a Relational Database.
With a Graph Database the model
from the whiteboard is
implemented directly.

Wednesday, October 6, 2010

Graph db: Creating a social graph

44

GraphDatabaseService graphDb = new EmbeddedGraphDatabase(
GRAPH_STORAGE_LOCATION);

Transaction tx = graphDb.beginTx();
try {

Node mrAnderson = graphDb.createNode();
mrAnderson.setProperty("name", "Thomas Anderson");
mrAnderson.setProperty("age", 29);

Node morpheus = graphDb.createNode();
morpheus.setProperty("name", "Morpheus");
morpheus.setProperty("rank", "Captain");

Relationship friendship = mrAnderson.createRelationshipTo(
morpheus, SocialGraphTypes.FRIENDSHIP);

tx.success();
} finally {

tx.finish();
}

Wednesday, October 6, 2010

Graph db: How do I know this person?
Node me = ...
Node you = ...

PathFinder shortestPathFinder = GraphAlgoFactory.shortestPath(
Traversals.expanderForTypes(

SocialGraphTypes.FRIENDSHIP, Direction.BOTH),
/* maximum depth: */ 4);

Path shortestPath = shortestPathFinder.findSinglePath(me, you);

for (Node friend : shortestPath.nodes()) {
System.out.println(friend.getProperty("name"));

}

45

Wednesday, October 6, 2010

Graph db: Recommend new friends
Node person = ...

TraversalDescription friendsOfFriends = Traversal.description()
.expand(Traversals.expanderForTypes(

 SocialGraphTypes.FRIENDSHIP, Direction.BOTH))
.prune(Traversal.pruneAfterDepth(2))
.breadthFirst() // Visit my friends before their friends.
//Visit a node at most once (don’t recommend direct friends)
.uniqueness(Uniqueness.NODE_GLOBAL)
.filter(new Predicate<Path>() {

// Only return friends of friends
public boolean accept(Path traversalPos) {

return traversalPos.length() == 2;
}

});

for (Node recommendation :
 friendsOfFriends.traverse(person).nodes()) {
System.out.println(recommendedFriend.getProperty("name"));

} 46

Wednesday, October 6, 2010

Four emerging NOSQL categories

๏Key-Value stores

๏ColumnFamiy stores

๏Document databases

๏Graph databases

47

Wednesday, October 6, 2010

Scaling to size vs. Scaling to complexity

48

Size

Complexity

Key/Value stores

Wednesday, October 6, 2010

Scaling to size vs. Scaling to complexity

48

Size

Complexity

Key/Value stores

ColumnFamily stores

Wednesday, October 6, 2010

Scaling to size vs. Scaling to complexity

48

Size

Complexity

Key/Value stores

ColumnFamily stores

Document databases

Wednesday, October 6, 2010

Scaling to size vs. Scaling to complexity

48

Size

Complexity

Key/Value stores

ColumnFamily stores

Document databases

Graph databases

Wednesday, October 6, 2010

Scaling to size vs. Scaling to complexity

48

Size

Complexity

Key/Value stores

ColumnFamily stores

Document databases

Graph databases

My subjective view: > 90% of use cases

Billions of nodes
and relationships

Wednesday, October 6, 2010

NOSQL challenges?

49

Wednesday, October 6, 2010

NOSQL challenges?
๏Mindshare

•But that’s also product usability (“how do you query it?”)

49

Wednesday, October 6, 2010

NOSQL challenges?
๏Mindshare

•But that’s also product usability (“how do you query it?”)

๏Tool support

•Both devtime tools and runtime ops tools

• Standards may help?

• ... or maybe just time

49

Wednesday, October 6, 2010

NOSQL challenges?
๏Mindshare

•But that’s also product usability (“how do you query it?”)

๏Tool support

•Both devtime tools and runtime ops tools

• Standards may help?

• ... or maybe just time

๏Middleware support

49

Wednesday, October 6, 2010

Middleware support?
๏Let me tell you the story about Mike

50

Wednesday, October 6, 2010

Step 1: Buildsing a web site

51

MySQL

PHP n stuff

One box

Wednesday, October 6, 2010

Step II: Whoa, ppl are actually using it?

52

Wednesday, October 6, 2010

Step II: Whoa, ppl are actually using it?

52

MySQL

PHP n stuff

Two boxes

Wednesday, October 6, 2010

Step III: That’s a LOT of pages served...

53

MySQL

PHP n stuff n boxesPHP n stuff PHP n stuff

1 box

Wednesday, October 6, 2010

Step IV: Our DB is completely overwhelmed...

54

MySQL (m)

PHP n stuff n boxesPHP n stuff PHP n stuff

MySQL (s) n boxes

Wednesday, October 6, 2010

Step V: Our DBs are STILL overwhelmed

?
55

Wednesday, October 6, 2010

Step V: Our DBs are STILL overwhelmed
๏Turns out the problem is due to joins

๏A while back we introduced a new feature

•Recommend restaurants based on the user’s friends (and friends
of friends)

• It’s killing us with joins

๏What about sharding?

๏What about SSDs?

56

Wednesday, October 6, 2010

Polyglot persistence (Not Only SQL)
๏Data sets are increasingly less uniform

๏Parts of Mike’s data fits well in an RDBMS

๏But parts of it is graph-shaped

• If fits much better in a graph database like Neo4j!

๏But what does the code look like?

57

Wednesday, October 6, 2010

An intervention!
There shall be code.

58

Wednesday, October 6, 2010

Conclusion
๏There’s an explosion of ‘nosql’ databases out there

• Some are immature and experimental

• Some are coming out of years of battle-hardened production

๏NOSQL is about finding the right tool for the job

• Frequently that’s an RDBMS

•But increasingly commonly an RDBMS is the perfect fit

๏We will have heterogenous data backends in the future

•Now the rest of the stack needs to step up and help developers
cope with that 59

Wednesday, October 6, 2010

Not Only SQL

60

Key takeaway

Wednesday, October 6, 2010

http://neotechnology.com

Wednesday, October 6, 2010

