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So what’s the plan?
๏Why NOSQL?

๏The NOSQL landscape

๏NOSQL challenges

๏Conclusion
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First off: the name
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๏WE ALL HATES IT, M’KAY?
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NOSQL is NOT...
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NOSQL is NOT...

๏ NO to SQL
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NOSQL is NOT...

๏ NO to SQL

๏ NEVER SQL
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Not Only SQL
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NOSQL is simply
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Four trends

NOSQL - Why now?
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Trend 1:
data set size

Source: IDC 20072007
40

Wednesday, October 6, 2010



2007
40

2010

988

Source: IDC 2007
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 3: Semi-structure
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๏ Individualization of content

• In the salary lists of the 1970s, all elements had exactly one job

• In the salary lists of the 2000s, we need 5 job columns! Or 8? 
Or 15?

๏All encompassing “entire world views”

• Store more data about each entity

๏Trend accelerated by the decentralization of content generation 
that is the hallmark of the age of participation (“web 2.0”)
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Aside: RDBMS performance
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Aside: RDBMS performance
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Aside: RDBMS performance
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Aside: RDBMS performance
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Trend 4:  Architecture
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Trend 4:  Architecture
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DB

Application

1990s: Database as integration hub

Application Application
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DBDB DB

Trend 4:  Architecture
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Service

2000s: (moving towards) Decoupled services
with their own backend

Service Service
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Why NOSQL Now?

๏Trend 1: Size

๏Trend 2: Connectedness

๏Trend 3: Semi-structure

๏Trend 4: Architecture
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Four NOSQL categories
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Category 1: Key-Value stores
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๏Lineage:

• “Dynamo: Amazon’s Highly Available Key-Value Store” (2007)

๏Data model:

•Global key-value mapping

•Think: Globally available HashMap/Dict/etc

๏Examples:

• Project Voldemort

•Tokyo {Cabinet, Tyrant, etc}
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Category 1: Key-Value stores
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๏Strengths

• Simple data model

•Great at scaling out horizontally

๏Weaknesses:

• Simplistic data model

• Poor for complex data
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Category II: ColumnFamily (BigTable) stores
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๏Lineage:

• “Bigtable:  A Distributed Storage System for Structured 
Data” (2006)

๏Data model:

•A big table, with column families

๏Examples:

•HBase

•HyperTable

•Cassandra
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Category III: Document databases
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๏Lineage:

• Lotus Notes

๏Data model:

•Collections of documents

•A document is a key-value collection

๏Examples:

•CouchDB

•MongoDB
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Document db: An example
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๏How would we model a blogging software?

๏One stab:

•Represent each Blog as a Collection of Post documents

•Represent Comments as nested documents in the Post 
documents
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Document db: Creating a blog post
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import com.mongodb.Mongo;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
// ...
Mongo mongo = new Mongo( "localhost" ); // Connect to MongoDB
// ...
DB blogs = mongo.getDB( "blogs" ); // Access the blogs database
DBCollection myBlog = blogs.getCollection( "Thobe’s blog" );

DBObject blogPost = new BasicDBObject();
blogPost.put( "title", "JAOO^H^H^H^HGoto; con 2010" );
blogPost.put( "pub_date", new Date() );
blogPost.put( "body", "Publishing a post about JA...Goto con in 

my MongoDB blog!" );
blogPost.put( "tags", Arrays.asList( "conference", "names" ) );
blogPost.put( "comments", new ArrayList() );

myBlog.insert( blogPost );
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Retrieving posts
// ...
import com.mongodb.DBCursor;
// ...

public Object getAllPosts( String blogName ) {
DBCollection blog = db.getCollection( blogName );
return renderPosts( blog.find() );

}

private Object renderPosts( DBCursor cursor ) {
// order by publication date (descending)
cursor = cursor.sort( new BasicDBObject( "pub_date", -1 ) );
// ...

}

37
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Category IV: Graph databases
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๏Lineage:

• Euler and graph theory

๏Data model:

•Nodes with properties

•Typed relationships with properties

๏Examples:

• Sones GraphDB

• InfiniteGraph

•Neo4j
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Property Graph model
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Property Graph model
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Property Graph model

41

LIVES WITH
LOVES

OWNS
DRIVES

LOVES
name: “James”
age: 32
twitter: “@spam”

name: “Mary”
age: 35

brand: “Volvo”
model: “V70”

property type: “car”
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Graphs are whiteboard friendly

42
Image credits: Tobias Ivarsson

An application domain model 
outlined on a whiteboard or piece 
of paper would be translated to 
an ER-diagram, then normalized 
to fit a Relational Database.
With a Graph Database the model 
from the whiteboard is 
implemented directly.
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Graphs are whiteboard friendly
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thobe

Wardrobe Strength

Joe project blog

Hello Joe

Neo4j performance analysis

Modularizing Jython

Image credits: Tobias Ivarsson

An application domain model 
outlined on a whiteboard or piece 
of paper would be translated to 
an ER-diagram, then normalized 
to fit a Relational Database.
With a Graph Database the model 
from the whiteboard is 
implemented directly.
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Graph db: Creating a social graph
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GraphDatabaseService graphDb = new EmbeddedGraphDatabase(
GRAPH_STORAGE_LOCATION );

Transaction tx = graphDb.beginTx();
try {

Node mrAnderson = graphDb.createNode();
mrAnderson.setProperty( "name", "Thomas Anderson" );
mrAnderson.setProperty( "age", 29 );

Node morpheus = graphDb.createNode();
morpheus.setProperty( "name", "Morpheus" );
morpheus.setProperty( "rank", "Captain" );

Relationship friendship = mrAnderson.createRelationshipTo(
morpheus, SocialGraphTypes.FRIENDSHIP );

tx.success();
} finally {

tx.finish();
}
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Graph db: How do I know this person?
Node me = ...
Node you = ...

PathFinder shortestPathFinder = GraphAlgoFactory.shortestPath(
Traversals.expanderForTypes(

SocialGraphTypes.FRIENDSHIP, Direction.BOTH ),
/* maximum depth: */ 4 );

Path shortestPath = shortestPathFinder.findSinglePath(me, you);

for ( Node friend : shortestPath.nodes() ) {
System.out.println( friend.getProperty( "name" ) );

}

45
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Graph db: Recommend new friends
Node person = ...

TraversalDescription friendsOfFriends = Traversal.description()
.expand( Traversals.expanderForTypes(

           SocialGraphTypes.FRIENDSHIP, Direction.BOTH ) )
.prune( Traversal.pruneAfterDepth( 2 ) )
.breadthFirst() // Visit my friends before their friends.
//Visit a node at most once (don’t recommend direct friends)
.uniqueness( Uniqueness.NODE_GLOBAL )
.filter( new Predicate<Path>() {

// Only return friends of friends
public boolean accept( Path traversalPos ) {

return traversalPos.length() == 2;
}

} );

for ( Node recommendation :
         friendsOfFriends.traverse( person ).nodes() ) {
System.out.println( recommendedFriend.getProperty("name") );

} 46
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Four emerging NOSQL categories

๏Key-Value stores

๏ColumnFamiy stores

๏Document databases

๏Graph databases
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Scaling to size vs. Scaling to complexity
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Size

Complexity

Key/Value stores
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Scaling to size vs. Scaling to complexity

48

Size

Complexity

Key/Value stores

ColumnFamily stores

Document databases

Graph databases

Wednesday, October 6, 2010



Scaling to size vs. Scaling to complexity

48

Size

Complexity

Key/Value stores

ColumnFamily stores

Document databases

Graph databases

My subjective view: > 90% of use cases

Billions of nodes
and relationships
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NOSQL challenges?
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NOSQL challenges?
๏Mindshare

•But that’s also product usability (“how do you query it?”)
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NOSQL challenges?
๏Mindshare

•But that’s also product usability (“how do you query it?”)

๏Tool support

•Both devtime tools and runtime ops tools

• Standards may help?

• ... or maybe just time
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NOSQL challenges?
๏Mindshare

•But that’s also product usability (“how do you query it?”)

๏Tool support

•Both devtime tools and runtime ops tools

• Standards may help?

• ... or maybe just time

๏Middleware support
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Middleware support?
๏Let me tell you the story about Mike
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Step 1: Buildsing a web site
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MySQL

PHP n stuff

One box
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Step II: Whoa, ppl are actually using it?
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Step II: Whoa, ppl are actually using it?
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MySQL

PHP n stuff

Two boxes
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Step III: That’s a LOT of pages served...
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MySQL

PHP n stuff n boxesPHP n stuff PHP n stuff

1 box
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Step IV: Our DB is completely overwhelmed...
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MySQL (m)

PHP n stuff n boxesPHP n stuff PHP n stuff

MySQL (s) n boxes
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Step V: Our DBs are STILL overwhelmed

?
55
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Step V: Our DBs are STILL overwhelmed
๏Turns out the problem is due to joins

๏A while back we introduced a new feature

•Recommend restaurants based on the user’s friends (and friends 
of friends)

• It’s killing us with joins

๏What about sharding?

๏What about SSDs?

56
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Polyglot persistence (Not Only SQL)
๏Data sets are increasingly less uniform

๏Parts of Mike’s data fits well in an RDBMS

๏But parts of it is graph-shaped

• If fits much better in a graph database like Neo4j!

๏But what does the code look like?

57
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An intervention!
There shall be code.
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Conclusion
๏There’s an explosion of ‘nosql’ databases out there

• Some are immature and experimental

• Some are coming out of years of battle-hardened production

๏NOSQL is about finding the right tool for the job

• Frequently that’s an RDBMS

•But increasingly commonly an RDBMS is the perfect fit

๏We will have heterogenous data backends in the future

•Now the rest of the stack needs to step up and help developers 
cope with that 59
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Not Only SQL
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Key takeaway
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