
Objective-C is an
old, weird thing

The Feel of Objective-C
Kresten Krab Thorup, Ph.D.
CTO, Trifork
krab@trifork.com

Credits and Thanks to Glenn Vanderburg, Relevance LLC

Objective-C

• Start with C

• Add the Smalltalk object model as a library

• Add a little syntax for

• Class and method definition

• Method calls

• A few object literals

Bits of History

SOFTWARE DEVELOPMENT

C++

Gates

Chips

Boards

C, Functions & Data

Objective-C, Classes, Objects

Applications

Brad Cox’s Thinking

Objective-C

Algol

Simula

Objective-C

Lisp

Smalltalk

C++

C

The Road Not Taken

10 minutes

C++

• Carefully infused OO into every part of C

• New syntax integrated into C grammar

• “OO the C way”

• Efficiency a core concern

• Compiler does all the work

• “Don’t pay for what you don’t use.”

Objective-C

• A mashup of two languages

• Smalltalk grafted onto C

• The boundaries are
obvious:

• Non-C-like syntax in
special “zones”

• Flag characters to mark Objective-C zones

• In C code, objects are opaque

C++ vs. Objective-C

• At first glance:

• C++ a serious effort

• Objective-C a hack job

• The reality is much different:

• C++ has serious faults, is widely loathed

• Objective-C is a useful, pragmatic hack

Objective-C:
The Language

Calling Methods

[netService stop]

Variable containing
target object

Message selector

Brackets indicate
Objective-C call

Java equivalent:
netService.stop()

Methods With Arguments

[serviceNameField setEnabled:YES]

[in_stream read:readBuffer maxLength:4096]

(Yes, that method name is “read:maxLength:”)

Declaring Methods

// ‘+’ indicates class method
+ (Album*) createAlbumFromEntry: (PSEntry*)entry;

// ‘-’ indicates instance method
- (PSEntry*) entry;

// Here’s a variable-length argument list:
- (NSArray*) arrayWithObjects:firstObject, ...;

Defining Methods
// ‘+’ indicates class method
+ (Album*) albumWithEntryID: (NSString*)entryID
{
 return [self instanceWithValue: entryID
 forKey: @"entryID"];
}

// ‘-’ indicates instance method
- (PSEntry*) entry
{
 return [_client entryWithIdentifier: _entryID];
}

Interfaces
@interface Album : MusicObject
{
 NSMutableArray *_sampleURLs, *_sampleTitles;
}

+ (Album*) albumWithEntryID: (NSString*)entryID;

- (PSEntry*) entry;

@property (copy) NSString* entryID;

@end

superclass

instance variables

methods

properties

NSWhat?

• Objective-C has no namespaces

• Libraries (and apps) use prefixes instead

• Many type names begin with “NS” — for
NeXTStep

Implementations

// Album.m

@implementation Album

// method definitions go here

@end

Types

• Object variables are usually pointers

• e.g., NSString *

• Methods can return any C type

• including object pointers

• use Objective-C method call anywhere
an expression is valid

• Parameters can also be any C type

Basic Types

• NSNumber, NSInteger

• NSString

• special literal syntax: @"foo"

• NSMutableString

• NSArray and NSMutableArray

• NSDictionary and NSMutableDictionary

Allocation
[NSAlert alloc] Allocates unitialized object

[new_object init] Performs default initialization

[[NSAlert alloc] init] Standard init pattern

NSAlert *alertSheet;
alertSheet = [[NSAlert alloc] init];

[NSAlert new] Rarely used equivalent

Initialization
[[NSString alloc] init]

[[NSString alloc] initWithBytes:value length:strlen(value)]

[[NSString alloc] initWithBytes:value length:strlen(value)
 encoding:NSASCIIStringEncoding]

[[NSString alloc] initWithFormat:@"%@/%@",
 parentAbsPath, relativePath]

[[NSString alloc] initWithData: data
 encoding: NSUTF8StringEncoding]

[[NSString alloc] initWithString: username]

[[NSString alloc] initWithContentsOfFile: path]

Special values

• self

• super

• nil

Memory Management

• Objective-C v4 supports garbage collection

• (but not on the iPhone, yet...)

• Manual reference counting

[obj retain]

[obj release]

Dynamism

30 minutes

Bundles

• NeXT’s Objective-C was early to adopt
dynamic loading of code, and now unloading.

• In Objective-C, this is embodied in the
concept of a Bundle, which is a loadable
module containing code and data (resource
file).

• In practice, it’s a directory named .bundle,
which holds the relevant artifacts.

Incremental Typing

• Usually, Objective-C is statically typed

• (or as static as C will allow)

• The typedef id represents “any Objective-C
object”

• You can write methods that work on any
type

Incremental Typing

• Method parameters with no type default to
the special type id

• Works great for starting a project with no, or
little typing information

• Gradually add type information to your
classes as they get more users, or to increase
confidence in the

Protocols

• In Smalltalk terminology, a ‘protocol’ is a set
of methods that may be implemented by
many classes.

• In Objective-C, this was formalized to
resemble what you may know as an
‘interface’ in Java.

Protocols
@protocol KeyValueAccess

- valueForKey:(NSString*)key;
- setValue:(id)val forKey:(NSString*)key;

@end

id <KeyValueAccess> obj = ...;
[obj setValue:@”Peter” forKey:@”name”];

protocol type

Protocols
// intersection types
id <InputStream, OutputStream> stream = ...

// or even...
NSFooBar <KeyValueAccess> foobar = ...;

// In Java, such types can be used to
// declare Class parameter constraints...

Categories

• Categories are collections of methods that
you add to some other class.

• Similar to Ruby mixins

• They can be added to classes you don’t have
the source to — even things like NSString!

• Extend library classes to fit your application.

Categories
@interface NSString (reverse)
- (NSString*)reverse;
@end

@implementation NSString (reverse)
- (NSString*)reverse {
 ...
}
@end

category name

category name

Categories

• Extend classes & Alternative to subclassing

• Distribute class code ‘aspect oriented’ [DCI]

• Say, for an interpreter, the base classes
may be the abstract syntax tree

• One category adds the type checker for
all nodes...

• Another category adds the evaluation

Reflection/Introspection

• Objective-C has rich support for reflection

• Learn the type of an object

• Learn about methods

• Does this object support method foo?

• Call methods dynamically

The Runtime System

• Remember, Objective-C is just a runtime
library + some helpful syntax.

• You can access that library directly:

• Dynamically create an instance of a class

• Catch and handle calls to missing
methods

Verbosity Fetish

[row objectAtIndex: item]

[newKernel setDataModifiedFromOriginal: NO]

[row insertObject: @"foo" atIndex: item]

Frameworks

• Most Objective-C libraries are called
“frameworks”

• Don’t fit the usual definition of “framework”

• Essentially a library with extra use/packaging
information for IDE

A Step Backward

• Manual memory management

• Buffer overflows, core dumps

• Dust off your old C/C++ debugging skills

Signatures!
- (float)calcLength:(float)x and:(float)y
{
 return sqrt(x*x + y*y);
}

// In Intel ABI, floats are passed in the
// FPU registers, integers on the stack.

int h = [obj calcLength:3 and:5]

Fuzzy Boundaries

• Many things implemented as ordinary C
functions or macros.

• Many important types not defined as objects.

• (usually for efficiency)

• Difficult to remember where the boundaries
are.

The Feel of Objective-C
Kresten Krab Thorup, Ph.D.

CTO, Trifork
krab@trifork.com

