
Design Stories
Exploring and Creating Code from a

Narrative Perspective

Kevlin Henney
kevlin@curbralan.com

@KevlinHenney

See http://programmer.97things.oreilly.com
(also http://tinyurl.com/97tepsk)

and follow @97TEPSK

An Agile View of Design
Look forward

Establish a clear vision of the whole
Approach design in time-driven,
incremental slices

Quantisation as user stories, use cases,
other scenario styles, features, spikes,
programming episodes, etc.

Look for feedback
Be responsive and reactive

Quantum of Flow (QoF)

quaff, v.
To drink deeply; to take a long draught;
also, to drink repeatedly in this manner.

quaff, n.
An act of quaffing, or the liquor quaffed; a
deep draught.

Oxford English Dictionary

Slicing Design over Time
Structural decomposition is one view
of a system's design

E.g., a static view of code structure
Temporal decomposition concerns
how code is developed over time

Build by adding functionally complete
capabilities based around usage goals
From user stories to pattern stories

Balancing Value and Risk
Priority measures importance to a
stakeholder, not urgency

Value can be context sensitive
Keep in mind that business risk is
something to be managed

It does not always manifest itself at the
same time or in the same place as
value or other measures of priority

Goal-Structured Slicing
Development steps in terms of
visible, functionally complete slices

E.g., use cases, user stories, user story
maps, FDD features and other scenario-
based techniques — emphasis in each
case is different, but all are related

Each slice is anchored in a goal and
works towards an outcome

They can be applied recursively

"Vin on Point", Joseph D Carney

The new user story backlog is a map
Jeff Patton
http://www.agileproductdesign.com/blog/the_new_backlog.html

Requirement-Styled Testing
It seems obvious that tests should
relate to requirements in some way

Also code-level requirements imposed
on one piece of code by another

But it is another thing to use a
requirement-based style for tests

Tests should define behaviour, not just
prod and poke at it
Applies to unit as well as system tests

testIsLeapYear

testNonLeapYears
testLeapYears

yearsNotDivisibleBy4AreNotLeapYears
yearsDivisibleBy4ButNotBy100AreLeapYears
yearsDivisibleBy100ButNotBy400AreNotLeapYears
yearsDivisibleBy400AreLeapYears

Procedural test structured in terms of the function being tested, but not in terms
of its functionality:

Tests partitioned in terms of the result of the function being tested:

Propositional tests reflecting requirements and partitioned in terms of the
problem domain (prefix with test_that if test is required as a prefix):

public static boolean isLeapYear(int year)

years_not_divisible_by_4_are_not_leap_years
years_divisible_by_4_but_not_by_100_are_leap_years
years_divisible_by_100_but_not_by_400_are_not_leap_years
years_divisible_by_400_are_leap_years

Refactoring (noun): a change made to the
internal structure of software to make it
easier to understand and cheaper to modify
without changing its observable behavior.

Refactor (verb): to restructure software by
applying a series of refactorings without
changing the observable behavior of the
software.

Martin Fowler, Refactoring

Functional

Operational

Developmental

class access_control
{
public:

bool is_locked(const std::basic_string<char> &key) const
{

std::list<std::basic_string<char> >::const_iterator found = std::find(locked.begin(), locked.end(), key);
return found != locked.end();

}
bool lock(const std::basic_string<char> &key)
{

std::list<std::basic_string<char> >::iterator found = std::find(locked.begin(), locked.end(), key);
if(found == locked.end())
{

locked.insert(locked.end(), key);
return true;

}
return false;

}
bool unlock(const std::basic_string<char> &key)
{

std::list<std::basic_string<char> >::iterator found = std::find(locked.begin(), locked.end(), key);
if(found != locked.end())
{

locked.erase(found);
return true;

}
return false;

}
...

private:
std::list<std::basic_string<char> > locked;
...

};

class access_control
{
public:

bool is_locked(const std::string &key) const
{

return std::count(locked.begin(), locked.end(), key) != 0;
}
bool lock(const std::string &key)
{

if(is_locked(key))
{

return false;
}
else
{

locked.push_back(key);
return true;

}
}
bool unlock(const std::string &key)
{

const std::size_t old_size = locked.size();
locked.remove(key);
return locked.size() != old_size;

}
...

private:
std::list<std::string> locked;
...

};

class access_control
{
public:

bool is_locked(const std::string &key) const
{

return locked.count(key) != 0;
}
bool lock(const std::string &key)
{

return locked.insert(key).second;
}
bool unlock(const std::string &key)
{

return locked.erase(key);
}
...

private:
std::set<std::string> locked;
...

};

Using Uncertainty as a Driver
Confronted with two options, most
people think that the most
important thing to do is make a
choice between them. In design
(software or otherwise) it is not.
The presence of two options is an
indicator that you need to consider
uncertainty in the design. Use the
uncertainty as a driver to determine
where you can defer commitment
to details and where you can
partition and abstract to reduce the
significance of design decisions.

Kevlin Henney
"Use Uncertainty as a Driver"

Patterns
Patterns name and reason about
recurring design decisions

Decisions may be implicit or explicit,
conscious or not
The naming of a pattern contributes to
design vocabulary
Patterns described in terms of context,
problem forces, solution structure and
consequences

Inside the Interpreter Pattern

Terminal
Expression

evaluate

Expression

evaluate

NonTerminal
Expression

evaluate

*

Composite: CompositeComposite: Leaf

Composite: Component

Command: ConcreteCommandCommand: ConcreteCommand

Command: Command

Client

Context

Context Object: ContextObject

Composite: Client

Command: Client
Context Object: Owner

Context Object: Client

Pattern Usage in Classic JUnit

*
1

TestSuite

TestResult

«interface»

TestListener

«interface»

Test

run

«role»

TestRunner

*
1

TestCase

run
setUp
tearDown

Command
Processor

Command

Observer

Composite

Double
Dispatch

Collecting
Parameter

Template
Method

Pattern Stories
A pattern story brings out sequence
of patterns in a design example

Capture conceptual narrative behind a
given piece of design, whether a
system in production or an illustrative
example
Forces and consequences played out
in order, each decision illustrated
concretely

JUnit Storyboard

History rarely happens in the right order or
at the right time, but the job of a historian is
to make it appear as if it did.

James Burke

POSA4 Warehouse Story

Pattern Sequences
A pattern sequence captures the
underlying narrative behind a story

A sequence can be described and
applied independent of a pattern story
Pattern sequences focus on incremental
development

Pattern compounds are examples of
named, short sequences

E.g., MVC, Pluggable Factory

The Interpreter pattern can be seen
as a pattern compound

A recurring set of overlapping and
interacting roles

It can also be seen as a sequence
of pattern application

I.e., 〈Command, Context Object,
Composite〉

Interpreter's Sequence

JUnit Storyboard Distilled
JUnit storyboard can be summarised
as a pattern sequence

I.e., 〈Command, Template Method,
Collecting Parameter, Class Adapter,
Pluggable Selector, Composite〉

A summary of the sequence does
not show how roles interact

E.g., what classes play what roles in
Composite

Pattern Languages
A pattern language connects many
patterns together

Captures connections and possibilities
between patterns, including options,
alternatives and necessary steps

There may be many possible
sequences through a language

A lone pattern sequence can be
considered a narrow pattern language

Patterns of Value
VALUE
OBJECT

IMMUTABLE
VALUE

COPIED
VALUE

MUTABLE
COMPANION

CLONING

COPY
CONSTRUCTOR

CLASS
FACTORY
METHOD

CONVERSION
METHOD

OVERLOAD–
OVERRIDE

METHOD PAIR

BRIDGE
METHOD

TYPE-SPECIFIC
OVERLOAD

CELL
VALUE

VALIDATING
CONSTRUCTOR

IMPLICIT
FAMILIAL

CONVERSION

OPERATORS
FOLLOW
BUILT-INS

POSA5 Request Handling

http://upload.wikimedia.org/wikipedia/en/f/f0/Cave_of_time.jpg

James Siddle
"Choose Your Own Architecture" – Interactive Pattern Storytelling

Interactive Pattern Stories

Like snowflakes, the human pattern is never cast
twice. We are uncommonly and marvelously
intricate in thought and action, our problems are
most complex and, too often, silently borne.

Alice Childress

	Design Stories�Exploring and Creating Code from a Narrative Perspective
	Slide Number 2
	Slide Number 3
	Slide Number 4
	An Agile View of Design
	Slide Number 6
	Quantum of Flow (QoF)
	Slide Number 8
	Slicing Design over Time
	Balancing Value and Risk
	Goal-Structured Slicing
	Slide Number 12
	Slide Number 13
	Requirement-Styled Testing
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Using Uncertainty as a Driver
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Patterns
	Inside the Interpreter Pattern
	Pattern Usage in Classic JUnit
	Pattern Stories
	JUnit Storyboard
	Slide Number 31
	POSA4 Warehouse Story
	Pattern Sequences
	Interpreter's Sequence
	JUnit Storyboard Distilled
	Pattern Languages
	Patterns of Value
	POSA5 Request Handling
	Slide Number 39
	Interactive Pattern Stories
	Slide Number 41
	Slide Number 42

