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Fortress Status Report

• Fortress is a growable, mathematically oriented, parallel

programming language

• Started under Sun/DARPA HPCS program, 2003–2006

• Fortress is now an open-source project with international

participation

• The Fortress 1.0 release (March 2008) synchronized the

specification and implementation

• Moving forward, we are growing the language and libraries

and developing a compiler
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With Multicore, a Profound Shift

• Parallelism is here, now, and in our faces

> Academics have been studying it for 50 years

> Serious commercial offerings for 25 years

> But now it’s in desktops and laptops

• Specialized expertise for science codes and databases and

networking

• But soon general practitioners must go parallel
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The bag of programming tricks

that has served us so well

for the last 50 years

is

the wrong way to think

going forward and

must be thrown out.
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Why?
• Good sequential code minimizes total number of operations.

> Clever tricks to reuse previously computed results.

> Good parallel code often performs redundant operations

to reduce communication.

• Good sequential algorithms minimize space usage.

> Clever tricks to reuse storage.

> Good parallel code often requires extra space to permit

temporal decoupling.

• Sequential idioms stress linear problem decomposition.

> Process one thing at a time and accumulate results.

> Good parallel code usually requires multiway problem

decomposition and multiway aggregation of results.
5



Let’s Add a Bunch of Numbers

SUM = 0 // Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?
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Let’s Add a Bunch of Numbers

SUM = 0 // Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

This is already bad!

Clever compilers have to undo this.
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What Does a Mathematician Say?

1000000∑
i=1

xi or maybe just

∑
x

Compare Fortran 90 SUM(X).

What, not how.

No commitment yet as to strategy. This is good.
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Sequential Computation Tree

SUM = 0

DO I = 1, 1000000

SUM = SUM + X(I)

END DO
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Atomic Update Computation Tree

SUM = 0

PARALLEL DO I = 1, 1000000

ATOMIC SUM = SUM + X(I)

END DO
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Parallel Computation Tree

What sort of code

should we write

to get a computation

tree of this shape?

What sort of code

would we like

to write?
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Finding the Length of a LISP List

Recursive:

(define length (list)

(cond ((null list) 0)

(else (+ 1 (length (rest list))))))
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Finding the Length of a LISP List

Iterative:

(define length (list)

(do ((x list (rest x))

(n 0 (+ n 1)))

((null x) n)))
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Length of an Object-Oriented List

class List<T> {
abstract int length();

}
class Empty extends List {

int length() { return 0; }
}
class Node<T> extends List<T> {

T first;

List<T> rest;

int length() { return 1 + rest.length(); }
}
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Linear versus Multiway Decomposition

• These are important program decomposition strategies,

but inherently sequential.

> Mostly because of the linearly organized data structure.

> Compare Peano arithmetic: 5 = ((((0+1)+1)+1)+1)+1

> Binary arithmetic is much more efficient than unary!

• We need a multiway decomposition paradigm:

length [ ] = 0

length [a] = 1

length (a++b) = (length a) + (length b)

This is just a summation problem: adding up a bunch of 1’s!
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Splitting a String into Words (1)

• Given: a string

• Result: List of strings, the words separated by spaces

> Words must be nonempty

> Words may be separated by more than one space

> String may or may not begin (or end) with spaces
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Splitting a String into Words (2)
• Tests:

println words(“This is a sample”)

println words(“ Here is another sample ”)

println words(“JustOneWord”)

println words(“ ”)

println words(“”)

• Expected output:

〈 This, is, a, sample 〉
〈 Here, is, another, sample 〉
〈 JustOneWord 〉
〈 〉
〈 〉
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Splitting a String into Words (3)
words(s: String) = do

result : ListJStringK := 〈 〉
word : String := “”

for k ← seq(0 # length(s)) do

char = substring(s, k, k + 1)

if (char = “ ”) then

if (word 6= “”) then result := result ‖ 〈word 〉 end
word := “”

else

word := word ‖ char
end

end

if (word 6= “”) then result := result ‖ 〈word 〉 end
result

end
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Splitting a String into Words (4)
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Splitting a String into Words (5)

maybeWord(s: String): ListJStringK =

if s = “” then 〈 〉 else 〈 s 〉 end

trait WordState

extends {AssociativeJWordState,⊕K }
comprises {Chunk, Segment }

opr ⊕(self, other : WordState): WordState

end
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Splitting a String into Words (6)
object Chunk(s: String) extends WordState

opr ⊕(self, other : Chunk): WordState = Chunk(s ‖ other .s)
opr ⊕(self, other : Segment): WordState =

Segment(s ‖ other .l, other .A, other .r)
end

object Segment(l: String, A: ListJStringK, r: String)

extends WordState

opr ⊕(self, other : Chunk): WordState =

Segment(l, A, r ‖ other .s)
opr ⊕(self, other : Segment): WordState =

Segment(l, A ‖maybeWord(r ‖ other .l) ‖ other .A, other .r)
end
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Splitting a String into Words (7)

processChar(c: String): WordState =

if (c = “ ”) then Segment(“”, 〈 〉, “”)

else Chunk(c)

end

words(s: String) = do

g =
⊕

k←0#length(s)

processChar(substring(s, k, k + 1))

typecase g of

Chunk⇒ maybeWord(g.s)

Segment⇒ maybeWord(g.l) ‖ g.A ‖maybeWord(g.r)

end

end
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What’s Going On Here?

Instead of linear induction

with one base case (empty),

we have multiway induction

with two base cases (empty and unit).

Why are these two base cases important?
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Representation of Abstract Collections

24



Associativity
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Catamorphism: Summation
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Computation: Summation
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Catamorphism: Lists
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Computation: Lists

29



Representation: Lists
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Catamorphism: Loops

for i← seq(1 : 4) do print i end

for i← 1 : 4 do print i end

Generators can modify the catamorphism

and so control the parallelism. 31



To Summarize: A Big Idea

• Loops and summations and list constructors are alike!

for i← 1 : 1000000 do xi := x2
i end∑

i←1:1000000

x2
i

〈x2
i | i← 1 : 1000000 〉

> Generate an abstract collection

> The body computes a function of each item

> Combine the results (or just synchronize)

• Whether to be sequential or parallel is a separable question

> That’s why they are especially good abstractions!

> Make the decision on the fly, to use available resources
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Another Big Idea

• Formulate a sequential loop as successive applications of

state transformation functions fi

• Find an efficient way to compute and represent compositions

of such functions (this step requires ingenuity)

• Instead of computing

s := s0; for i← seq(1 : 1000000) do s := fi(s) end ,

compute s := ( ◦
i←1:1000000

fi) s0

• Because function composition is associative, the latter has a

parallel strategy

• In the “words in a string” problem, each character can be

regarded as defining a state transformation function
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We Need a New Mindset
• DO loops are so 1950s!

• So are linear linked lists!

• JavaTM-style iterators are so last millennium!

• Even arrays are suspect!

• As soon as you say “first, SUM = 0” you are hosed.

Accumulators are BAD.

• If you say, “process subproblems in order,” you lose.

• The great tricks of the sequential past DON’T WORK.

• The programming idioms that have become second nature to

us as everyday tools DON’T WORK.
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Fortress: A Parallel Language

High productivity for multicore, SMP, and cluster computing

• Hard to write a program that isn’t potentially parallel

• Support for parallelism at several levels

> Expressions

> Loops, reductions, and comprehensions

> Parallel code regions

> Explicit multithreading

• Shared global address space model with shared data

• Thread synchronization through atomic blocks and

transactional memory
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These Are All Potentially Parallel

f(a) + g(b) L = 〈 find(k, x) | k ← 1 :n, x← A 〉

s =
∑

k←1:n

ck x
k

for k ← 1 :n do

ak := bk
sum += ck x

k

end

do

f(a)

also do

g(b)

end

do

T1 = spawn f(a)

T2 = spawn g(b)

T1.wait();T2.wait()

end
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Mathematical Syntax 1

Integrated mathematical and object-oriented notation

• Supports a stylistic spectrum that runs from Fortran

to JavaTM—and sticks out at both ends!

> More conventionally mathematical than Fortran
− Compare a*x**2+b*x+c and a x2 + b x+ c

> More object-oriented than Java
− Multiple inheritance
− Numbers, booleans, and characters are objects

> To find the size of a set S : either |S| or S.size
− If you prefer #S , defining it is a one-liner.
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Mathematical Syntax 2

• Full Unicode character set available for use, including

mathematical operators and Greek letters:

× ÷ ⊕ ª ⊗ ® ¯ ≈ α β γ δ

¢ ¯ £ ↔ ∧ ∨ ≡ 6≡ ε ζ η θ

≤ ≥ ∑ ∏ ≺ 4 < Â ι κ λ µ

∩ ∪ ] ⊂ ⊆ ⊇ ⊃ ∈ ξ π ρ σ

u t @ v w A ¬ 6∈ φ χ ψ ω

b c d e 〈 〉 f g Γ Θ and so on

• Use of “funny characters” is under the control of libraries

(and therefore users)
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Visit http://projectfortress.sun.com

An open-source project with international participation

• Open source since January 2007

• University participation includes:

> University of Tokyo: matrix algorithms

> Rice University: code optimization

> Aarhus University: syntactic abstraction

> University of Texas at Austin: static type checking

• Also participation by many individuals
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A Growing Library

The Fortress library now includes over 12,000 lines of code.

• Integer, floating-point, and string operations

• Big integers, rational numbers, intervals

• Collections (lists, sets, maps, heaps, etc.)

• Multidimensional arrays

• Sparse vectors and matrices

• Generators and reducers

> Implement loops, comprehensions, and reductions

> Support implicit parallelism

• Fortress abstract syntax trees

• Sorting
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Tools: ‘Fortify’ Code Formatter

• Emacs-based tool

• Fortress programs can be typed on ASCII keyboards

• Code automatically formatted for processing by LATEX

sum: RR64 := 0

for k<-1:n do

a[k] := (1-alpha)b[k]

sum += c[k] x^k

end

sum:R64 := 0

for k ← 1 :n do

ak := (1− α)bk
sum += ck x

k

end

All code on these slides was formatted by this tool.
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Tools: Editing Environments

• Fortress mode for Emacs

> Provides syntax coloring

> Some automatic formatting

> Unicode font conversion

• Fortress NetBeansTM plug-in

> Syntax highlighting

> Mark occurrences

> Instant rename

• These tools were contributed by people outside Sun
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Syntax Coloring Screen Shot
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Fortress 1.0
• With the Fortress 1.0 release in March 2008, we

synchronized the specification and implementation

• Implementation expanded and made more reliable since

Fortress 1.0β

• Many features in the 1.0β specification were removed for 1.0

> But with every intention of adding them back as the

language grows

> And we have done so over the last six months
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What works NOW
• Parallelism in loops, reductions, comprehensions, tuples

• Automatic load balancing via work-stealing

for i← 0 # |children ′| do
children ′i := generate tailJKey,ValK(children i+lsize+1, 1)

end

factorial(n:Z32) =
∏

i←1:n

i

opr (n:Z32)! =
∏

i←1:n

i

〈x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0〉
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What works NOW
• Spawn

spawn do

s := DoneJT K(old .val())
end
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What works NOW
• Atomic blocks with transactional memory

attempt(): (StateJT K,Boolean) = atomic do

old = s

computed := old .isDone()

if ¬old .isDone() then

if old .isPending() then abort() end

s := PendingJT K
(old , true)

else

(old , false)

end

end
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What works NOW
• Object-oriented type system with multiple inheritance

• Overloaded methods and operators with dynamic

multimethod dispatch

• Sets, arrays, lists, maps, skip lists

• Pure queues, deques, priority queues

• Integers, floating-point, strings, booleans

• Big integers, rational numbers, interval arithmetic

• Syntactic abstraction (just barely)
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Next steps:

• Full static type checker (almost there!)

• Static type inference to reduce “visual clutter”

• Parallel nested transactions

• Compiler

> Initially targeted to JVM for full multithreaded platform

independence

> After that, VM customization for Fortress-specific

optimizations
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The Parallel Future
• We need to teach new strategies for problem decomposition.

> Data structure design/object relationships

> Algorithmic organization

> Don’t split a problem into “the first” and “the rest.”

> Do split a problem into roughly equal pieces.

Then figure out how to combine general subsolutions.

> Often this makes combining the results a bit harder.

• We need programming languages and runtime

implementations that support parallel strategies and hybrid

sequential/parallel strategies.

• We must learn to manage new space-time tradeoffs.
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Conclusion
• A program organized according to linear problem

decomposition principles can be really hard to parallelize.

• A program organized according to parallel problem

decomposition principles is easily run either in parallel or

sequentially, according to available resources.

• The new strategy has costs and overheads. They will be

reduced over time but will not disappear.

• This is our only hope for program portability in the future.
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It is an exciting time for the project

• External contributions and feedback are increasing

> Thank you!

• Many implementation tasks are being done outside Sun

• The language is growing

• A community of developers is participating in its evolution
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