
ProgrammingEnd User
Glenn Vanderburg

Relevance, Inc.

Programmers

End Users

Software

End Users

Programmers

Software

Your End Users

Your Software

You

But How?

We will:

Briefly discuss the renaissance in end-user
programming research

Examine notable successes and failures

Establish some principles for success

Create a plan of action

End-User
Programming
Renaissance

Current Efforts

Scratch

Hackety Hack

OLPC

Processing

Lego Mindstorms

and more ...

Successes
and Failures

Success: Spreadsheets

VisiCalc

Lotus 1-2-3

Microsoft Excel

Probably the most popular programming
platform ever

Microsoft Excel

Informal handling of data

Very loosely structured

You can put many “tables” on a sheet

Lone cells acting as variables

Excel gives everything a name for you

Rich expression language

Failure: Lotus Improv

Failure: Lotus Improv

Failure: Lotus Improv

By most standards, much better than Excel

Inherently multidimensional

More structured and sophisticated

But it failed.

Easier to do sophisticated things

Harder to do simple things

Harder to explore your problem

What Went Wrong?

Improv set out “to fix all this”. It was an auditors dream. It
provided rarified heights of abstraction, formalisms for rows
and columns, and in short was truly comprehensible. It failed
utterly, not because it failed in its ambitions but because it
succeeded.

—Adam Bosworth

In the end it didn't go anywhere, probably because in setting
out to improve on spreadsheets, Improv lost the essence of
a spreadsheet …

—Pito Salas, inventor of Improv

Success: Ruby DSLs

Rich Kilmer, JAOO 2007

USAF system for managing mid-air refueling
network.

Core of system described in Ruby code.

Non-programmer domain experts reading,
correcting, and even writing new Ruby code
for the system.

That code formed the core of the running
system.

Ruby DSL Example

I'm guessing at what the real thing
looks like -- Glenn
coronet :grand_forks do
 base 'Grand Forks AFB'
 tankers :long_range 8
 tankers :short_range 15
 location [47.964296, -97.394829]
end

Failure: AppleScript

on get_header_from_message(desiredHeader, theMessage)
 tell application "Mail"
 set hdrs to (headers of theMessage)
 repeat with hdr in hdrs
 if name of hdr is desiredHeader then
 return contents of hdr
 end if
 end repeat
 return ""
 end tell
end get_header_from_message

Failure: AppleScript

Scripting system for MacOS

Looks just like English!

Which is the problem.

It doesn’t act like English.

People don’t have a big problem with formal
languages.

They just want to have clear rules

And sensible behavior in the face of mistakes

What Went Wrong?

The experiment in designing a language that resembled
natural languages was not successful. […] In the end the
syntactic variations and flexibility did more to confuse
programmers than help them out.

The main problem is that AppleScript only appears to be a
natural language on the surface. In fact is an artificial
language, like any other programming language […] even
small changes to the script may introduce subtle syntactic
errors which baffle users. It is very easy to read
AppleScript, but quite hard to write it.

—William Cook, designer of AppleScript

Success: DabbleDB

Web application for managing data

You build your own apps to suit your data

Goal: be the platform for every system that’s
written in Excel but shouldn’t be

Different model from Excel, but similar
lessons:

Do sensible things with no direction from user

Allow user to add structure and metadata
gradually

Programmable using formulas.

Failure (So Far): Automator

Apparently an attempt to replace AppleScript

A visual programming system

Follows a pipes-and-filters model

Configurable filters; no real runtime decisions

Very broad; too shallow

Still evolving

Success: Mingle

Project collaboration and management tool

Doesn’t mandate a development process

Teams build a system that fits their process

Cards, properties, formulas, transitions

Charts and tables

Has been applied in unexpected ways

Success:
Puzzle Games

Success: Puzzle Games

I think the essence of programming shows in
puzzle-oriented games:

Lemmings

The Incredible Machine

Professor Fizzwizzle

Enigmo

Popularity indicates children becoming
accustomed to programming challenges.

Wait a generation.

Principles
for Success

Constrain to a Domain

Success stories are all domain specific!

Allows focus on the task

Available facilities make sense in context

General-purpose facilities can be present, but
should be secondary

Allow, Don’t Require Structure

Start with expressions, declarations, and
data, not programs

Structuring mechanisms should be optional

Optimize for easy start and exploration

Act, Don’t Look Human

Many people thing these are required:

Natural-language syntax

Visual programming

What matters more:

Simple rules

Not much punctuation

Good error messages

Sensible default behavior

Ability to start small and explore

Imperative, OO, Functional?

I think most people relate to imperative
programming best.

Tcl’s command-oriented syntax seems ideal.

But success stories so far don’t bear that
out.

Excel is practically functional programming.

SQL (including Mingle’s query language) and
Rich Kilmer’s Ruby DSLs are declarative.

A Plan of Action

Recipe 1 (1970s)

Bentley, Kernighan, and the Bell Labs crowd

Design a language and implement a
processor or translator

Examples: pic, tbl, eqn, grap, chem

Works great if you’re the guys who invented
yacc and lex

Recipe 2 (1980s)

Alan Kay, Dan Ingalls, etc.

Immerse the user in a sea of objects!

Smalltalk users will modify their environment
by programming.

Still real potential here for programmers, but
not for end users.

Recipe 3 (1990s)

Many folks, but mostly John Ousterhout

Build your system in two halves:

Core domain logic implemented as a DSL

Rest of system implemented in that DSL

Success with this approach has been rare

Seems too costly up front

Your users might not want or need such a
powerful language

Recipe 4 (2000s)

Popping up everywhere (but Eric Evans gets
special credit)

Get the domain language at the core of the
system right

Maybe involving domain-specific programming
constructs

But the important thing is the system of objects
and names

Users will be thinking in that language
already.

How Recipe 4 Works

If you get the domain language right, building
a domain-specific language is easy.

If you are writing in a metaprogrammable
language, an internal DSL will happen
naturally.

Domain-driven design helps you separate
essence from accident.

A system with good hooks for adding an
external DSL, if necessary.

Summary

Learn from the past

Cater to your users’ strengths

domain experts, language users

Allow exploration and improvisation

Focus on the domain

Clean internal design facilitates exposing the
internals

