
© 1993-2008 Object Mentor Incorporated. All rights reserved.

Principles, Practices Lean and Agile Software
Management In The Large

 Experiences of a Playing Coach

Dave Thomas
Object Mentor Inc. and Bedarra Research Labs

Carleton University Canada, Queensland University of
Technology Australia

www.davethomas.net
davethomas@objectmentor.com

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 2

Outline

 Lean, Agile and Agility

 Large-Scale Lean and Agile Development At-A-Glance
 Common Work Practices
 Envisioning
 Definition
 Development
 Release Engineering

 Social Engineering - Peopleware

 Discussion

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 3

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 4

Large Scale Product Software – Why So Wicked?

 End Customers not available to explain requirements and manage scope

 Release dates and content must be fixed 12 – 18 months ahead meet the
needs of the market

 Product Lines/Platforms are used to deliver multiple products

 Developers are geographically distributed

 Software Teams have dependencies dictated by architecture/features and
accidentally by the code base

 Software relies on many 3rd party products

 Builds and Tests often require special environments and manual labor

 Performance, Usability … requirements

 CMM Level 3+, Six Sigma and SOX are all must have requirements

Exists in the muddle between Lean and Agile

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 5

Classic Faults In The Large

 Management versus Leadership
 Top-down dictation of schedules
 PMO and excess project managers
 Death by meetings (i.e. Productivity = 1/number of meetings)
 Managers managing up!
 Quality is a police force rather than a practice
 Requirements are documented rather than communicated

 Draconian water fall process complete with templates and signoffs
 Faked by almost everyone
 Requirements database (e.g. 5000 item wish list with no business value or

examples)
 Death by documentation – (e.g. analysis, architecture, design documents most

of which can’t be round tripped because it changes when the code is written)
 CMM certification measures you have a process, not that you actually follow it!

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 6

Classic Faults In The Large

 Legacy Architecture, Technology and Organization
 Architecture built to last, impossible to change
 Technology once best of breed no legacy and limiting productivity
 Architecture and Technology constrain customer ability to upgrade
 People aligned with architecture and technology capable but locked in the

legacy

 “Over the wall testing” with associated slips in schedule and quality
 System test or SQA with no clear ownership of defects in requirements or

code
 SQA police with metric whips for code, but none for requirements,

infrastructure or schedule sanity
 Increased emphasis on process as a patch
 Stabilization Releases - The name says it all! We ship it with bugs so we

can make the date we promised and try to fix it later

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 7

Generally Accepted Software Physics – Often Ignored

 It has been written at least twice before, ideally by the same people
 It needs to be written at least twice after it is released to really be good
 One major version per 12 – 18 months with 2 - 3 dot releases
 All developers on the team should work on the same code stream
 Fix the date, reduce the scope (forget more resources, more time)
 Make sure every one knows the Vision – Tell a simple story and stick to it
 Ship Your Organization – Staff The Architecture
 Build To Last – ADD (API First Design)
 Just DoIt - Fail Fast, Fail Often; Don’t debate it when you can test it
 KLOCS kill, less code is always more
 Negotiation estimates to match reality
 Don’t do new design in a product release time box
 Don’t develop components and expect to use them in the same time box
 Be cautions of framework development
 Kill defective components before they degrade so much they kill you
 Use common practices and tools (the best wrong thing)
 Automate everything
 Listen to outside critics – Don’t believe your own happy talk

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 8

Challenges Facing Our Large Clients

 Business is less requirements driven and more reaction driven as they
lose leadership and begin to follow their customers. Business
decisions constantly changing, R&D decisions are slow.

 Legacy code base and management thinking blocks innovation and
rapid development. Robust and Reliable becomes an excuse for slow
and not good enough.

 Integration as important as development but has not been a major
R&D investment. Component quality is good but system quality and
delivery are much less predictable. Component design skills different
from service design skills.

 Use of low level languages, tools and few components means that age
and energy become the only competitive differentiator which favors
new players in emerging countries.

 Marketing has no sense of risk, engineering is risk averse and little
sense of urgency and is constrained by legacy. IT does it right, but
competitors steal market share faster and don’t seem to do it wrong.

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 9

Solutions for Improved Agility

 Aggressive partnering to leverage components and skills.

 Offshore development to leverage cost, age and energy.

 Streamline Software Development with Lean Software Management
and Agile Practices.

 Use of more productive software technologies, practices and tool
chains.

You Need to Change The Game To Achieve Increased Agility!

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 10

Lean and Agile and Agility

 Both Lean and Agile and Death By Quality (TQM, Six Sigma, CMM)
come from Toyota Just In Time (now called Lean)

 Lean appeals to the business which often don’t understand software and
often feel hostage to it. Lean is a top down process to identify
improvements to the software value chain. It requires constant
innovation and improvement in all parts of the business.

 Agile appeals to developers many of whom don’t understand business
sometimes feel hostage to it. Agile is a bottom team centered process for
improving software development predictability and quality.

 Agile Development (Scrum, XP, TDD …) is the best set of practice for
small teams to develop software especially when scope is managed by a
knowledgeable business customer/product owner.

 Agility is the capability of the business to respond to the rapidly
changing needs of their customers, partners and their competitor. It
naturally appeals to business leaders but they confuse it with Agile
Development which promises improved predictability and quality but not
productivity or flexibility).

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 11

Solutions for Improved Agility

 Aggressive partnering to leverage components and skills.

 Offshore development to leverage cost, age and energy.

 Streamline Software Development with Lean Software Management
and Agile Practices.

 Use of more productive software technologies, practices and tool
chains.

 You Need to Change The Game To Achieve Increased Agility!

 The challenge is not to minimize expenses rather it is to maximize
business value!

 Experience Matters!

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 12

Lean Software in a Nutshell

 Respect the individual (“work with”)

 Empower Team through leadership and coaching

 Proactively identify and eliminate software waste

 Use common work practices, rhythm and tools

 Maintain Visibility - Make all activities, artifacts and risks visible

 Decide as late as possible

 Deliver as fast as possible

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 13

Lean Software in a Nutshell

 Make Requirements Tangible – So the developer can test and the customer
can see

 Design Quality In – Make automated testing part of requirements, design and
development. Done = Unit and Acceptance Tested Components and
Features

 Each team owns its predictability, progress and quality

 Build To Last - Interfaces are essential for independent development and
acceptance testing. Components support Platform based products

 Ship Your Organization – Align the Teams with the Product Architecture

 Defer Commitments to as late as possible

 Align compensation with predictable delivery and quality

 Continuously improve your people and practices hence your products and
business => Encourage and Reward Learning and Innovation

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 14

Lean Software

 Lean principles derived from Just-In-Time Manufacturing

 Incorporates values and practices articulated in
Peopleware, Spiral and Rapid Application Development

Seven Lean Principles

Eliminate waste
Amplify learning

Decide as late as possible
Deliver as fast as possible

Empower the team
Build integrity in
See the whole

Core Shared Values

Client-focused
Client-driven

Incremental results
Continuous questioning and

introspection
Change is progress to a better

solution

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 15

Lean Software in a Nutshell – Maximize The Value Delivered

 Respect the individual (“work with”)
 Empower Team through leadership and coaching
 Proactively identify ways to maximize value and eliminate waste
 Use common work practices, rhythm and tools
 Maintain Visibility - Make all activities, artifacts and risks visible
 Make Requirements Tangible – So the developer can test customer can see
 Decide as late as possible, Defer Commitments to as late as possible
 Deliver as fast as possible, Cycle Time Matters!
 Design Quality In – Automated testing of requirements, design and

development. Done = Unit and Acceptance Tested Components and
Features

 Each team owns its predictability, progress and quality
 Build To Last - Interfaces are essential for independent development and

acceptance testing. Components support Platform based products
 Ship Your Organization – Align the Teams with the Product Architecture
 Align compensation with predictable delivery and quality
 Continuously improve your people and practices hence your products and

business
 Encourage and Reward Learning and Innovation

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 16

Common Examples of Software Waste

 Lack of common vocabulary, rhythm and tools

 Too many meetings – 1/meetings is a productivity metric

 Lack of Transparency

 Defects in requirements, architecture, design, programs or tests

 Lack of understanding/training – requirements, design, code, test

 Unmanaged supplier, development or requirement risks

 Unnecessary Fire Drills – feature request disguised as a critical defect

 Excessive component repair vs. timely replacement

 Manual Testing

 Unnecessary process artifacts

 Big Analysis, Architecture, Design, excessive dependencies, coupling

 Gold Plating – Requirements, Code or Tests

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 17

Relationship between Development Team and Management

Agile Commitments

 Successful development requires trust and transparency
between customer/management and supplier/development

 Need to foster a “work with” instead of “works for” relationship

Working With

Management

Vision
Communication

Coordination
Coaching

Managing Scope

Development

Predictability
Quality
Visibility

Discipline

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 18

Why should software be different than mechanical or
electrical product design?

 Customer Focused

 Requirements Driven

 Built from existing parts – Components and Platforms

 Simulation/Emulation

 Prototype construction

 Prototype evaluation and test

 Development of production product

Software is Product Development!

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 19

A Large Scale Lean and Agile Success Story

The IBM initiated Eclipse.Org involves over 1000 developers from multiple
companies globally developing software using Lean and Agile practices.

milestones
first

API
first

end
game

retrospectives

always have
a customer

build to
last

continuous
integration

community
involvement

new &
noteworthy

early
incremental

planning

continuous
testing

use your
own product

component
centric

drive with
open eyes

validate

reduce
stress

learn

enable

attract
to latest

transparency

validate
update

dynamic
teams

show
progress

enable

explore
validate

© 2005 International Business Machines; made available under the EPL v1.0

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 20

Good Software Comes in 3s

Build It 3 Times; you get it right the third time!
 Once to understand what it is (Envisioning)

 Once to understand how it goes together (Definition)

 One last time to make it for real (Development)

 Make sure everyone shares the big story, has the right infrastructure
and the parts make the whole and ship it (Release Engineering)

Ship It Three Times and Then Start Re-Design
 1st Release make it useful and robust

 2nd Release make it more useful and faster

 3rd Release make it more useful and smaller

 4th Release Start Redesigning to avoid Legacy

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 21

Lean and Agile Values and Principles

Large-Scale Lean Development Activities At-A-Glance

Envisioning

Product Owner Team Common Work Practices

Definition Development Release
Engineering

Prototypes/Models

Requirements
Backlog

Risk Backlog

Team… Team…

GUI Guidelines

Architecture

Product Backlog

Release Backlogs

Team…

Team…

Team…

Team…

Potentially
Shippable
Product

Team
Release
Backlog

Shippable
Code

Increments

Sprint
Release

Backlogs

CI&T

CI&T

©2006-2007 Bedarra Research Labs and Object Mentor

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 22

Lean Product Team

 Agile values people over processes and tools

 Agile recognizes people are “heart and soul” of the development process

 Product Team is assembled with individuals who represent all of the skill sets
required to successfully deliver a software product

 Structure can be easily integrated into any existing corporate model (e.g.
staffing, performance objectives, performance reviews)

 Typical team consists of Product Management, Development and Release
Engineering, Release Architecture

 Triages the Risk Backlog

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 23

Product Team Responsibilities

 Maximize business value that the product delivers to the customer

 Communicates the overall product vision

 Communicates the architectural vision

 Creates, owns and maintains all Product backlogs

 Creates tangible requirements

 Creates use cases and acceptance tests

 Creates and schedules releases

 Creates development teams (Scrums)

 Assigns work items to internal teams and external teams

 Manages third-party suppliers

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 24

Common Work Practices and Rhythms

Regardless of the activity, each team is effectively self managed through the use
of four key practices

Sprint Rhythm (2 wk)
• Sprint Planning (1) , Daily Stand-ups .., Sprint Retrospective (1)
• Features => Stories => Tasks (1 – 2 days)

Development Rhythm
• Design Acceptance Test, Design Unit Test, Design Code, Build and Test

Release and Product Rhythm
• 6 - 8 sprints per internal release; 3 - 4 internal releases per product release
• Envision (3 – 6 m), Definition (1 – 3 m), Development (6 – 12), Freeze (1 – 3)
• Component and Platform Rhythm is 3 – 6 months ahead of Product Release

Sprints
Used to Execute

The Work In
Small Increments

Metrics
Used to Track
and Maintain

Visibility

Backlogs
Used to Organize

The Work By
Value

Continuous
Test

Used to Ensure
Quality

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 25

Backlogs

 Requirements Backlog
 A list of must have, should have and nice-to-have customer

requirements
 Risk Backlog

 List of potential product, market and development risks
 Product Backlog

 List of prioritized features with estimated times (all releases, all
teams)

 Product Release Backlog
 List of prioritized features with estimated times (one release, all

teams)
 Scrum Team Release Backlog

 List of stories to be completed by the team in one release (one
release, one team)

 Scrum Team Sprint Backlog
 List of stories to be completed by the team in one sprint (one

sprint, one team)

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 26

Requirements
Backlog

Product
Backlog

Product Release
Backlog

SCRUM Team
Release Backlog

Sprint
Backlog

Requirement Feature

Feature

Feature

Feature Story Story

StoryFeature Story

Envisioning – 10-15%b

Release Engineering – 10-15%

Development – 40-55%

Definition – 15-20%

… Release 2… … Team 2…Risk Backlog

Risk Feature

Feature

Story

Requirement

Backlogs are Used To Organize The Work

 BACKLOG is a list of work items – a few backlogs cover life cycle

 All work items must be entered into one of the backlogs

 All work items are prioritized by customer value

 Backlogs are reviewed and triaged as necessary

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 27

Scrums used to organize work

 Product teams consist of 4 - 20 people called SCRUMs

 Scrum is guided and facilitated by leader acting as coach/facilitator

 Scrum has the whole team needed to execute their backlog

 2 week Sprints provide a common rhythm for whole life cycle

 All work including defect repair, training is in the backlog

Team
‘sprints’ at
sustainable

pace

Product
Release

Backlogs

Sprint
Backlog

Potentially Shippable
Product
Increment

Daily
Stand-up
Meeting

 Schwaber, Beedle

Scrum
Backlog

Product Release Backlog
-- All work items for a release
-- Prioritized by customer

Scrum Backlog
-- Assigned to a scrum
-- Work items for one release
-- Work items equal 1-4 days work

Sprint Backlog
-- Sprint are 2 or 4 weeks
-- Contains work items for

 the sprint time box

Potentially shippable
product increment
The definition of a
“potentially shippable
increment” is determined by
an informed “customer”.

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 28

Types of Scrums

 Scrums are used for all activities in the product life cycle
 Envisioning Scrums

 Collect and analyze market, customer, product, and technology requirements
 Develops proof-of-concept and vision prototypes
 Verifies prototypes with customers
 Capture requirements in a Requirements Backlog
 Capture risks in a Risk Backlog

 Definition Scrums
 Translate Requirements into Features by creating User Cases and Acceptance

Tests
 Define the Architecture and Component Breakdown Structure for the product
 Sort Features into the Product Backlog and Product Release Backlogs
 Speculative Estimates

 Development and Release Engineering Scrums
 Translate Features in Scrum Release Backlog into Stories plus associated unit &

acceptance tests
 Stories include estimates that are owned by the team and refined over time
 Stories are prioritized based on their associated business value
 Converts Stories into Working Code

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 29

Measurements are used to Track Progress

 Project management not a separate entity in an Agile team

 Project management owned collectively by team
 Team members contribute to the estimating process

and commit to the deliverables
 Team members own estimates, schedules and deliverables

 Team responsible for maintaining visibility
 Team uses wall charts or online charts to make status visible to all

stakeholders
 Metrics derived automatically and continuously from the build process
 Metrics are used to assess performance of the process, not people

 Typical Measurements
 Efficiency: Are resources being optimally deployed?
 Progress: Is the project on track for time and budget?
 Productivity: How much code per unit of labor?
 Rhythm or heartbeat: How active is the project day-to- day?
 Quality: How good is the software being produced?

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 30

Team-Oriented Metrics

 Features/Stories Delivered (Velocity)

 Features/Stories Planned (Estimated Velocity)

 Features/Stories Remaining (Burn Down)

 Unit and Acceptance Tests Run (Progress)

 Backlog adds, changes, deletions (Feature Flux and Creep)

 Continuous Check-ins and Builds (Rhythm)

 Classes and Methods adds, changes, deletions (Impact on Code Base)

 Code Coverage due to UTs and ATs (Quality)

 Defects and Defect Density (Quality)

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 31

Lean and Agile Principles

Lean and Agile For Large-Scale Development

Envisioning

Product Team Key Work Practices

Definition Development Release
Engineering

Prototypes/Models

Requirements
Backlog

Risk Backlog

Team… Team…

GUI Guidelines

Architecture

Product Backlog

Release Backlogs

Team…

Team…

Team…

Team…

Potentially
Shippable
Product

Team
Release
Backlog

Shippable
Code

Increments

Sprint
Release

Backlogs

CI&T

CI&T

©2006-2007 Bedarra Research Labs and Object Mentor

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 32

Envisioning and Definition “BIG SPRINT 0”

The initial sprint is often called sprint 0 and it is used to as a exploratory/high
level planning activity which seeks to explore, understand, swag, identify
dependencies using practices such as:

 Spikes!

 Thin Slices (Tracer Bullets)

Unfortunately in large scale software new features or components contain so
many unknowns and so much risk that development teams have little chance
of delivering these in a release time box!

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 33

What Is Envisioning?

Envisioning is the process of developing a clear product vision
and roadmap…

through consultation with users and choosers…

to ensure that we are building
the right product using the right technology

for the right market.

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 34

10% of overall effort

Envisioning

Envisioning ensures that you target the right features, technology and markets
through customer, market, and technology research

Competitive Delta
Analysis

Practices
 Brainstorming & visioning Competitive
analysis (SWOT) Delta analysis QFD
 Customer studies Hardware, platform &
component evals Prototyping/modeling

Deliverables
 Requirements backlog Risk
backlog Analysis & Verification
Reports Prototypes/Models
 Look-and-Feel Guidelines

Requirements
Backlog

Risk
Backlog

Customer Field
Studies & Interviews

Technology
Evaluations

Prototypes
& Models

GUI
Guidelines

Market & Product
Analysis Brainstorming

& Visioning

QFD
House of Quality

Prototyping

Product Development Deliverables

Acceptance
Criteria

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 35

Product Vision – Voice of The Customer

 Customers, Business Analysts, Product Owners and Developers need
a simple story (s) which provides a shared vision of what is being
developed

 Story Telling carries the essence, humans render the details according
to the story, be it complex software, knowledge management or
animated films

 A Story is elaborated by
 Glossary to define terminology
 Customer stories in the form of narrative and/or video
 Customer stories in terms of features relative to current or

competitors product or our legacy product – is like, is not like
 Envisioning, House of Quality (QFD) …
 Domain Model(s) to show essential relationships
 Prototypes, Simulations

Essence = Vision = The Really Big Story

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 36

The Requirements Tangibility Imperative!

 Requirements MUST be UNDERSTANDABLE!
 Need the conversation, not just the text
 Tangibility is directly correlated to domain knowledge and understanding the
customers stories.
 Acceptance Criteria make requirements testable

 Requirements Must Have Business Value
 Need to have a business value, and an estimated effort when defined, revised for
release backlog

 Requirements MUST be TESTABLE!
TDD Acceptance Tests

 Non-Functional Requirements ARE Requirements – TCO, ilities…
 Need TDD Acceptance Tests as well

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 37

So… Why Do We Envision?

 To understand the market – If we build it, will they come?

 To understand what the customer wants – Is it useful? Is it usable?

 To determine that we can actually build it – Can we engineer it?

 To determine if we can build it better than the next guy.

 Convert vague concepts into concrete product visualizations.

 Convert vague desires into tangible requirements.

 To verify with the customer that our assumptions are correct.

 To prioritize the customer’s needs so we can prioritize development.

 To establish a product vision and a roadmap.

Ideal Development Path

Probable Path

Visionless
Path

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 38

What Is Definition?

Definition is the process of ensuring that the product can be
composed of its constituent parts and allocated the backlogs
to appropriate teams

 Built to last through the use of appropriate internal and
external components all of which have well defined
interfaces

 Features are mapped across the architecture and allocated
to feature and component teams

 Features are roughly sized/estimated as an input to
downstream development teams

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 39

20% of overall effort

Definition

Definition involves transforming requirements into features, creating a high-level
architecture and determining an initial work allocation for teams.

Product
Backlog

(Features &
Components)

Requirements
Backlog

Practices
 Feature Definition Estimating
Dependency Management Vendor
Management TDD Architecture-Driven
Design Component & Feature Break Downs

Deliverables
 Feature docs Architecture
docs Product, component and
feature backlogs Risk backlog

Release 1
Backlog

Release N
Backlog

Use
Cases

Acceptance
Tests

Architecture
Driven Design

Estimating

Dependency Mgt

Prioritizing

Product Development
Deliverables

Risk
Backlog

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 40

One or more
use cases

or scenarios

One or more
acceptance tests

Feature
(also called a Theme)+ =

Features

 A feature is a customer requirement that has been translated into something
that can be implemented by the development team

 Typically consists of one or more use cases and acceptance tests

 The use cases describe the feature’s operation

 The acceptance test describes the acceptable outcomes

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 41

Feature Story

Story

Complex Story Story

Story

Story

Stories

 Stories are specific descriptions of the work to be done

 A feature use case will generally result in many stories

 A story represents one path through a use case

 A story should be able to be implemented in a single sprint by one or two
developers in a few days. If this is not possible, it should be split into smaller
stories.

 Stories have associated unit and acceptance tests

 Stories have estimates

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 42

Architecture Driven Design (ADD) - API First

 Object Orientation [Simula 67] is an approach to software architecture, design
and implementation which is based on building simulation models of the
system. These models are expressed in code.

 Architecture Driven Design Benefits

 Compartmentalizes the work into logical divisions
 Creates stability within the individual parts of the product
 Establishes ownership and accountability for individual

parts
 Communicates the essence of the product more easily
 Provides a single expression of the system
 Model can be version managed easily
 Model can evolve

 Expressed through a layered architectural approach

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 43

Layered Architecture Example

Application
Layer

Service
Layer

Platform
Layer

Layered Architectural Model

 The layered model organizes the
architecture into 3–5 layers which
communicate through an API.

 This model is essential for the use of third-
party platform or applications and often is
heavily influenced by the use of third-party
offerings.

 Agile organizes work into
feature breakdown structures and
component breakdown structures.

 These structures are organize, plan and
allocate resources into Feature Teams,
Component Teams and Platform Teams.

 The structures are also used to organize,
plan and allocate Features and Releases.

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 44

Component Breakdown Structure (CBS)

 The CBS provides a software bill of
materials for the organization calling out
new, modified and existing software
components.

 The presence of a CBS is the hall mark of a
Product Line Architecture and enables
building platforms and associated
components and products.

 The CBS is developed bottom up often as a
core platform or framework on which to
build other products.

 Ideally one would just configure the
components and deliver a product but the
reality is that features need additional code
hence applications.

Component Break Down Structure
(Software Bill Of Materials)

Application
Layer

Service
Layer

Platform
Layer

HW/SW
Encapsulation,
Drivers, Protocols

Means
subsystem

Means component, framework or
library

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 45

use cases/scenarios

acceptance tests

+ =Feature Story

Story

Story Story

Story

Story

= FBS

Feature Breakdown Structure (FBS)

 Features are organized in an FBS

 The FBS relates features to other features (feature dependencies)

 The FBS also cross cuts components (component dependencies)

 Dependencies are captured in a Dependency Structure Matrix

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 46

Component
C

Component
B

Component
A

Feature Story
Feature Backlogs and Component Backlogs

Feature and Component Teams and Backlogs

 There is a natural tension between components and features a critical part of
definition is the identification of dependencies and the allocation of work to
appropriate teams.

 Feature cross-cuts components hence require either product specific feature
development or additional component development to support that feature.
Often it is a combination of both with the need to move feature specific
extensions into components in a later release.

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 47

Product and Release Planning

Product
Backlog

Product
Release
Backlog

Scrum 3

Product
Release
Backlog

Scrum 2

Scrum 1
Release
Backlog

Sprint 3

Sprint 2

Sprint 1
Backlog

Product Team
builds backlog
containing list of
features with a
first estimate.

Features are
allocated to
a specific
release. A
release is a 3-4
month timebox.

Features assigned to a
specific scrum. The scrum
team refines the features
into work items called
stories, divides the stories
into sprints, and prepares a
second estimate. The
estimates are compared
and consensus is reached
thru discussion.

Based on discussion,
work items may be
moved from one sprint to
another sprint, move from
one team to another,
deferred to another
release.

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 48

Stage One:
Estimate Preparation

Definition Team Release
Estimates

The Product Team makes initial
estimates for each feature in
each of the Product Release
Backlogs.

Development Team Release
Estimates
Each SCRUM team make
estimates for each feature in their
Scrum Release Backlog.

Stage Two:
Estimate Convergence

The two sets of estimates are
compared. Consensus is reached
through dialog between developers,
product release engineers, architects,
customers and owners.

Based on the discussions, features
may be shuffled, re-allocated, and re-
prioritized.

Based on the discussions,
development schedules are updated
and product release dates are set.

Product Estimates

 Estimates are “negotiated”, not “assigned”

 Two-stage iterative estimating process conducted over 4-8 weeks

 Strong emphasis on the collective ownership

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 49

Estimation and Planning –The Best Wrong Answer

 Estimates Are Owned By Team
 (e.g. multiple estimates by multiple people to encourage discussion)

 Use Relative Estimating Techniques
 (e.g. this story is half as difficult as that story so it will take half the time)

 Use Range or 3 Point Estimates
 (e.g. use ranges or)

 Use Multiple Units of Measurement
 (e.g. multiple units – ideal days, story points, classes/methods – to

improve accuracy)

 Learn From Previous Estimating Experience
 (e.g. comparing previous estimates with previous actual outcomes)

 Learn from Expert Experience
 (e.g. If you have never used J2EE bring in someone who has!)

 Improve Estimates Using Wide band Delphi (Planning Poker)

 Cross Check with Activity Based Estimates

 Estimate Resources with Activity Based Estimates

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 50

60% of overall effort

Individual
Sprint

Backlog

SCRUM
Release
Backlog

Potential
Shippable

Code

Finalized
Sprint

Backlog

Sprint Daily
Stand-Up Meeting

Sprint
Retrospective

Meeting

Continuous
Integration

& Test

Visible Progress

Refactoring

Collective Ownership
Unit & Acceptance
Testing

Practices
 Small Releases Simple Design Collective Ownership
 Refactoring Continuous Integration and Test
 Test-Driven Development Architecture-Driven Design

Deliverables
 Robust code
 Status reports
 Readiness

Sprint Planning Meeting

Estimating

Development

Development transforms requirements into tested code.

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 51

10% of overall effort

Release Engineering

Release Engineering ensures correct integration of disparate code units
into a cohesive product release. Performed concurrently with development.

Practices
 Dependency Management Vendor
Management Test-Driven Development
 Architecture-Driven Design Continuous
Integration and Test

Deliverables
 Continuous Build and Test
Environment Stable, Robust
Code Progress Reports &
Metrics

Dependency
Management

Shippable
Product
Release

Team Code Increments

Continuous Integration & Test Environment

Environment
& Tools Mgt

Continuous
Integration & Test

Reports &
Metrics

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 52

Release Engineering - Start With a Winning End Game

 Continuous Integration and Test Infrastructure

 Development Tools Infrastructure

 Transparency – Electronic Information Walls and Dashboards

 Dependency Management

 Readiness and Quality

 Documentation

 International Language and Accessibility

 Manual Acceptance and Test Automation

 Freeze, Thaw and Fix Management

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 53

Dependency Management

 Dependency identification is a critical success factor because teams can become
deadlocked waiting on code from other teams

 Dependency management is responsibility of Release Engineering on behalf of the
Product Team

 Thin Slices for each Feature reduce surprises

 Can be reduced by planning, sequencing and test-driven development

 Individual and pair wise component testing reduces integration problems

 Integration sprints used to ensure features come together properly

Test fixtures are used to support parallel code development
by isolating code components from one another for unit testing

Isolating Fixture

Component
Under Test

Component Component

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 54

Architecture Dependency Models

Dependency Model = DSM* + Design Rules

What is a Dependency Model?

 An ordered hierarchical decomposition of the System into its Subsystems and
their Components (modules)

 Display of current dependencies

 Design Rules for allowable dependencies between Subsystems

 Enforce Layering
 Enforce Encapsulations
 Keep Components Independent

* DSM – Dependency Structure Matrix

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 55

Just Enough Documentation

 Literate Programming for code artifacts

 Wiki or equivalent for non code artifacts

 Product Documentation derived from conversations, Envisioning, Acceptance
Tests and UI artifacts in the code

 Technical writers typically lag the development team by one or two sprints
sprint

 Release Engineering responsible for ensuring documentation acceptance

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 56

Establish A Product Development Dashboard

Automate the linkage between features/stories,
code and tests

Measure true progress based on the state of
the continuous build

@StoryMain

Produce AT, UT, Velocity and
Burndown Charts

Automatically

Load wiki with
requirements,

features, use cases,
stories, acceptance
tests and unit tests

Link code in
library to stories

in wiki

See http://www.jot.fm/issues/issue_2007_03/column4

http://www.jot.fm/issues/issue_2007_03/column4

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 57

Social Engineering

 Values
 Vision
 Standardize Vocabulary and Practices e.g. points vs. ideal days…
 Spread Experienced People Across Teams/Locations
 Use Playing Coaches to share vision and experiences
 Common Tools
 Empower Distributed Teams – VOIP, IM, electronic White Boards
 Provide company wide visibility – publish charts to web
 Peer Reviews, Technical Seminars…

• Predictable Delivery
• Quality Delivery
• Teamwork
• Early Problem Identification and Resolution

Align Individual/Team Compensation with Desired Behavior

Common Culture

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 58

Multi-site Development

 Stop using words like Remote, Headquarters learn their names! Keep their
maps, calendars and pictures on your walls!

 Co-location is clearly ideal, but not reality in today’s large scale software
development.

 Open Source Development clearly demonstrates that co-location isn’t
essential.

 Shared Mental Space is more important than shared physical space

 Work must be allocated based on Component Interfaces, components should
not be split across teams/locations.

 Live with your colleagues! Hire their grads, hire their manager… Ship people
at least every 2 – 3 months.

 Release engineering and global continuous build make progress and problems
visible and manageable. Wiki, VOIP, Shared White Boards enable dialog at a
distance as a compliment to face to face

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 59

Executive

Technical Director

Team Leader

Individual
Contributors…

Individual
Contributor…

Distinguished
Engineer

Senior Member
Technical Staff

Outstanding
Contributor

…

Technical Leadership Council

Playing Coaches and Technical Ladders

 Responsible for “walking the floor” to provide independent leadership and
expertise – need time to do so!

 Responsible for identifying software waste and communicating the really big
story – need time to do so!

 Need a real technical ladder in so that top technical talent has a career path

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 60

Communities of Interest – Some Examples

 Technical Communities

 Definition Community
 Envisioning Community
 Infrastructure and Tools

Community
 Testing Community

 Leadership/Coaching Communities

 Technical
Director/Management
Community

 Team Leader/Scrum Coach
Community

 Customer/Field Community

Management

Architects
Leads

Customer
Product

Mgr

Tools
Process

Infrastructure
Platforms

Coaches

Release
Deployment

Support

Test
Driven

Development

Products

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 61

Key Changes in a Typical Lean and Transition

1. Software = Product Design and Manufacturing

Increase the understanding of the software value chain at all levels in the
organization

Identify and reduce waste in software value chain

Understand the importance of component, platform and application life
cycles

Understand the benefits of investment in tangible requirements and
architecture

Understand how to design quality in (versus test defects out)

2. Directing and Managing => Leadership and Coaching

Work With versus Work For - Coaching versus Directing

Increased self discipline for teams and individuals who own deliverables,
quality and schedule

Increased individual ownership with associated responsibility and
accountability

Leadership proactively identifies and manages risk

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 62

Key Changes in a Typical Lean and Transition

3. My Way versus The Best Same “Wrong Way”

Everyone! needs to change a little for the organization to change a lot!

Common vocabulary, practices and tools applied sensibly and metrics
aligned with practices

Make sure everyone knows the same way before fixing it - Improve process
each release of the company i.e. triage process/practice/tools defects like
other defects

4. Strengthen Technical and Coaching Ladders
Coaches valued for people skills; Technical leaders valued for technical
skills

Peer evaluation is an important promotion metric for both

Mandatory constructive annual reviews

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 63

Transition Management

Mentor
Office

External
Coaches

Internal
Coaches

Training &
Mentoring

Transition
Team*

Coordination &
Communication

* Represents all
ranks selected
from teams who
are transitioning
to give all ranks a

voice

Transition
Steering

Mentoring/coaching to learn and improve

Communication at level maintains the trust and provides feedback

Teams being transitioned

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 64

Successful Software Development is about a Winning Culture

 Software is a team sport, and like all team sports practice, constructive
peer feedback and coaching are essential.

 Winning teams need to implicitly know the moves of each player, as
well as the movements of the team as whole.

 The ultimate expression of process is a culture where building software
is more like playing jazz. People Just Do It!

