OR: HOW I LEARNED TO STOP WORRYING AND LOVE THE

Jakob I. Pagter Alexandra Instituttet A/S

PUBLIC

About "Alexandra Instituttet A/S"

- Non-profit application oriented research institution focus on IT
- GTS Godkendt Teknologisk Service Institut
- 100+ employees

Essential Characteristics of Cloud Computing

On-demand self-service

• provision computing capabilities automatically without requiring human interaction

Broad network access

• Capabilities are available over the network promote use by heterogeneous thin or thick client

Measured Service

Resource usage can be monitored, controlled, and reported, providing transparency

Rapid elasticity

• Capabilities can be rapidly and elastically provisioned, automatically, to quickly scale out or rapidly scale in

Resource pooling

• A sense of location independence. customer has no control or knowledge over the location of the resources

Cloud Service Models -

* Assumed to incorporate subordinate layers.

NIST Visual Model of Cloud Computing Definition

Q: Rate the challenges/issues of the 'cloud'/on-demand model

(Scale: 1 = Not at all concerned 5 = Very concerned)

Source: IDC Enterprise Panel, 3Q09, n = 263

Governance and compliance

FY10 MS Online Data Centers and Markets

Data Center location will be based on ship-to address during the purchase process

Data will reside in 2 Data Centers to provide redundancy

Current market Coming in April 2010

 We have four datacenters in the US, two in Europe and two in Asia. Even though you choose to store your data in Europe instead of Worldwide, your data will be stored at least three times. Two times on your main location and one time at a secondary data center'

Statement MS Azure:

Microsoft

with backup in Amsterdam stria 13. Israel leium 14. Netherlands ech Republic 15. Norway 16. Poland Denmark 17. Portugal nland 18. Romania 19. Spain 20. Sweden Windows Azure 21. Switzerland 22. UK

- 1. Australia
- Hong Kong
- 3. India (sales in Nov '09)
- 4. Japan
- Malaysia
- New Zealand
- Singapore (sales in Nov '09)
- South Korea (sales July '10)
- 9. Taiwan (sales July '10)

++ Hong Kong will go-live in Oct 2009. APAC data will be backed up in the US until then

COMPUTERWORLD Subscribe to a Newsletter							o a Newsletter 🤤
Т	opics 🔻	News	In Depth	Reviews	Blogs 🔻	Opinion	Shark Tank
Government/ Industries		Financial Se	ervices Gov't I	_egislation/Reg	gulation Heal	th Care IT Indus	

Home > Government/Industries > Gov't Legislation/Regulation

News

EU upset by Microsoft warning on U.S. access to EU cloud

By Jennifer Baker

July 5, 2011 12:28 PM ET

□ Comment
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

IDG News Service - Members of the European Parliament have demanded to know what lawmakers intend to do about the conflict between the European Union's Data Protection Directive and the U.S. Patriot Act.

The issue has been raised following Microsoft's admission last week that it may have to hand over European customers' data on a new cloud service to U.S. authorities. The company may also be compelled by the Patriot Act to keep details of any such data transfer secret. This is directly contrary to the European directive, which states that organizations must inform users when they disclose personal information.

Note: MS first movers on EU standard consider that the U.S. Patriot Act thus effectively Protection? What will the Commission do protection rules can be e precedence ient's

ΛΙΕΧΛΝΟΒΛ INSTITUTTE

SLA's

causes interacting with one another and therefore gives us many opportunities to protect the service against any similar event reoccurring.

Multi-Tenancy

Multi-Tenancy

 one program, need to serve at the same time the number of consumer organizations (Tenants)

Separation

 Solution that supports Multi-Tenancy, capable of creating separation between the different Tenants

Technical attack vectors

- 1. Outsiders
- 2. Platform

3. Insiders

4. Neighbours

Business pros (and cons!)

Two problems

Technical protection

- Adress specific problems
- Part of bigger picture

Compliance

• Law

- Regulations (e.g PCI, HIPAA, data protection)
- Relies on proper technical measures

Two approaches

But first – "go old school"

Security by design using cryptography

- Adapt to user capabilities
- Exploit existing protection
 - Understand first!
- Divide-and-conquer
 - Trust, classification, …

- Protection level <-> key sizes
- What does and doesn't crypto provide
- When aren't data encrypted
- Don't DIY
- Protect the key!

Context – key sizes!

Level	Protection	Symmetric	Asymmetric	Hash
1	Attacks in "real-time" by individuals Only acceptable for authentication tag size	32	-	-
2	Very short-term protection against small organizations Should not be used for confidentiality in new systems	64	816	128
3	Short-term protection against medium organizations, medium- term protection against small organizations	72	1008	144
4	Very short-term protection against agencies, long-term protection against small organizations Smallest general-purpose level, 2-key 3DES restricted to 2 ⁴⁰ plaintext/ciphertexts, protection from 2009 to 2012	80	1248	160
5	Legacy standard level 2-key 3DES restricted to 10 ⁶ plaintext/ciphertexts, protection from 2009 to 2020	96	1776	192
6	Medium-term protection 3-key 3DES, protection from 2009 to 2030	112	2432	224
7	Long-term protection Generic application-independent recommendation, protection from 2009 to 2040	128	3248	256
8	"Foreseeable future" Good protection against quantum computers	256	15424	512
	Baseret på www.keylength.com			

ALEXANDRA INSTITUTTET

Crypto check/wish list

Client-side encryption

No trust in third parties

Minimal user responsibility

Full functionality

Dropbox case study

Storage-as-a-Service

			SecretSync	CompletelyPrivateFi	les
Solution	DYI	Boxcryptor	Secretsync	completely privatefiles	Tahoe
Service(s)	Anything	dropbox	dropbox	box	Any storage
Client-side encryption	yes	Yes/ password based!	yes	yes	yes
Trust in third parties	no	no	yes	yes	Divide-and- conquer
Minimal user responsibilit y	no	no	(yes)	(yes)	no
Full functionality	no	no	no	no	no

laaS/Pa	aaS	cloud	i ¹⁰³	SC COURS
laaS PaaS	Built-in Added Total	Sofficor Sec	Ciphennet Int	
Solution	DYI	Porticor	CipherCloud	Tahoe
Service(s)	Anything	AWS	Salesforce etc.	Any storage
Client-side encryption	yes	yes	yes	yes
Trust in third parties	no	Divide-and- conquer	no	Divide-and- conquer
Minimal user responsibility	no	yes	yes	no
Full functionality	no	no	tokenization	no

SaaS		Jour Stand		
laaS PaaS	Built-in Added Total SaaS	Building Tust in the		
Solution	DYI	Ciphercloud	Voltage	
Service(s)	Nope!	Salesforce etc.	SaaS eg. PCI	
Client-side encryption	yes	yes	yes	
Trust in third parties	no	no	no	
Minimal user responsibility	no	yes	yes	
Full functionality	no	tokenization	tokenization	ALEXANDRA

Client-side encryption

No trust in third parties

Minimal user responsibility

Full functionality

Crypto evolution

Integrated

- "Crypto-asa-Service"
- Limitations

Next generation

- Work on encrypted data
 - Remove/ reduce PII

Traditional

• DIY

More fancy abbreviations

SMC

- Secure Multiparty Computation
- Research since '78
- "Practical" since 2008

ABC

- Attribute-Based Credentials
- Research since at least '83 (blind signatures)
- Software "previews" available: U-Prove (Microsoft) + IdentityMixer (IBM)

SMC: Shallow confidentiality

LEXANDRA INSTITUTTET

SMC: Deep confidentiality

SMC: energiauktion.dk (via partisia.com)

ABC: Identity in the cloud (simplified)

ABC: properties

Existing properties (digital signatures/IdP)

- Identification
- Accountability

New desirable properties

- Non-traceable/anonymitet
 - IdP can't trace your transactions
- Unlinkable/pseudonymitet
 - Eg. a provider can't link your profile in a merger with another provider
- Verified claims
 - Eg. age og zipcode
- Minimal disclosure

ABC: Credentials

ABC: IdP vha. credentials ("on-demand")

ABC: Anonymity

ABC: Pseudonymity

ABC: Selective disclosure

ABC: Id-brug vha. credentials

ABC vs. signatur etc.

Egenskab	Signatur	ABC
Identity	 	
Accountability	 	 ✓
Anonymity (non-traceability)	×	
Pseudonymity (unlinkability)	×	
Selective (minimal) disclosure	×	 ✓

ABC and SMC

Solution	DYI	ABC	SMC
Service(s)	Some	Any	Any
Client-side encryption	yes	yes	yes
Trust in third parties	no	(yes)	Divide-and- conquer
Minimal user responsibility	no	(yes)	(yes)
Full functionality	no	(yes)	yes

Thanks for you attention!

Jakob I. Pagter jakob.i.pagter@alexandra.dk