copenhagen

goto;

conference

EVALUATING NOSQL PERFORMANCE:
TIME FOR BENCHARKING

Sergey Bushik
Senior RnD Engineer, Altoros

INTERNATIONAL AR

—J'--“:_,_‘.

SOFTWARE DEVELOPMENT —— o\ —

o’ = 4 —

e e S—
A =
N —

N —— -
/// T et B e =

Agenda @ALTOROS

Introduction

Few lines about benchmarking client
Workloads

Cluster setup

Meet evaluated databases: short stop on each
Diagrams and comments

Summary

Questions

V VV V V V V V

Introduction LI ALTOROS

v Database’s list is extensive (RDBMS 90+, NoSQL
122+)

v" Core NoSQL systems types
» Key value stores
* Document oriented stores
* Column family stores

» Graph databases
XML databases
* Object database management systems

v Different APIs and clients
v" Different performance

How do they compare? D ALTOROS

v" Yahoo! team offered “standard” benchmark

v Yahoo! Cloud Serving Benchmark (YCSB)
* Focus on database
* Focus on performance

v" YCSB Client consists of 2 parts
» Workload generator
» Workload scenarios

YCSB features DY ALTOROS

v" Open source
v Extensible

v Has connectors
Azure, BigTable, Cassandra, CouchDB,
Dynomite, GemFire, HBase, Hypertable,
Infinispan, MongoDB, PNUTS, Redis,
Connector for Sharded RDBMS (i.e. MySQL),
Voldemort, GigaSpaces XAP

v We developed few connectors

Accumulo, Couchbase, Riak,
Connector for Shared Nothing RDBMS (i.e. MySQL Cluster)

YCSB architecture

@ALTOROS

Workload

Command line arguments

- Database connector
- Target throughput
- Number of threads

properties file
- Connection

- Dataset size

- Request distribution

- Operations proportion |

Database
connectors

New workloads

Client nodes
1 i |

. Multi-phase

YCSB Client processing

Workloads YCSB Client

Executor threads
NN NN\
. AV e W Ve Vg
Extensions o~~~
Statistics

Cassandra
(o) e

<:>n MongoDB

% Other databases

Workloads IALTOROS

v Workload is a combination of key-values:
Request distribution (uniform, zipfian)
Record size
Operation proportion (%)

v Types of workload phases:
Load phase
Transaction phase

Workloads

@ALTOROS

v Load phase workload
Working set is created

100 million records
1 KB record (10 fields by 100 Bytes)
120-140G total or =30-40G per node

v Transaction phase workloads

Wor
Wor
Wor
Wor
Wor
Wor
Wor

K

oad A (read/update ratio: 50/50, zipfian)

oad B (read/update ratio: 95/5, zipfian)

oad C (read ratio: 100, zipfian)

oad D (read/update/insert ratio: 95/0/5, zipfian)
oad E (read/update/insert ratio: 95/0/5, uniform)
oad F (read/read-modify-write ratio: 50/50, zipfian)
oad G (read/insert ratio: 10/90, zipfian)

Cluster setup DY ALTOROS

v Amazon EC2 as a cluster infrastructure
v No replication (replication factor = 0)

v" EBS volumes in RAIDO (stripping) array for data
storage directory

v" OS swapping is OFF

Cluster specification D ALTOROS

Amazon m1.large Instance

7.5 GB memory

2 virtual cores

8 GB instance storage

YCSB Client 64-bit Amazon Linux (CentOS binary compatible)

Amazon m1.xlarge Instances * 4

15 GB memory
4 virtual cores
4 EBS 50 GB volumes in RAIDO

64-bit Amazon Linux

* Extra nodes for masters, routers, etc

Databases OYALTOROS

The list of databases
« (Cassandra 1.0
« HBase 0.92.0
MongoDB 2.0.5
MySQL Cluster 7.2.5
MySQL Sharded 5.5.2.3
Riak 1.1.1

We tuned each system as well as we knew how
Let's see who is worth the prize

Cassandra 1.0 Y ALTOROS

v Column-oriented

v No single point of failure

v" Distributed

v" Elastically scalable

v Tuneably consistent

v" Caching
Key cache
Off-heap/on-heap row cache
Memory mapped files

Cassandra 1.0 Y ALTOROS

Cassandra configuration
Random partitioner
Initial token space: 2*27 / 4
Memtable space: 4G
Commit log is on the separate disk
Concurrent reads: 32 (8 * 4 cores)
Concurrent writes: 64 (16 * 4 disks)
Compression: Snappy

Thrift

JVM tuning
MAX HEAP_SIZE: 6G
HEAP _NEWSIZE: 400M
Rest of 15G RAM is for OS caching

Cassandra 1.0 DY ALTOROS

CREATE KEYSPACE UserKeyspace WITH
placement_strategy = 'SimpleStrategy' AND
strategy options = {replication_factor:1} AND durable writes = true;

USE UserKeyspace;

CREATE COLUMN FAMILY UserColumnFamily WITH
comparator = UTF8Type AND
key validation class = UTF8Type AND
keys cached = 100000000 AND
rows_cached = 1000000 AND
row_cache_provider = 'SerializingCacheProvider’ AND
compression_options = {sstable compression.SnappyCompressor};

* Make sure you use off-heap row caching! (it requires JNA library)

HBase 0.92.0 2V ALTOROS

v Column-oriented

v" Distributed

v" Built on top of Hadoop DFS (Distributed File System)
v Block cache

v" Bloom filters on per-column family basis

v Consistent reads/writes

' HBase 0.92.0

HMaster

HQuorumPeer

e

|
HRegionServer

Datanode (HDFS process)

LYALTOROS

HBase configuration
Auto flush: OFF

Write buffer: 12M (2M default)
Compression: LZO

JVM tuning
Namenode: 4G
Datanode: 2G
Region server: 6G
Master: 2G

HBase 0.92.0 2V ALTOROS

CREATE 11", {
NAME =>'f1", BLOOMFILTER => 'ROW/,
REPLICATION_SCOPE =>"'0", COMPRESSION =>"'LZO',

VERSIONS =>"3', TTL => '2147483647', BLOCKSIZE => 16384,
IN_MEMORY => "true', BLOCKCACHE => "true',

DEFERRED_LOG_FLUSH => "true’

)
DISABLE 't1'

ALTER 't1', METHOD => "table_att', MAX_ FILESIZE =>"'1073741824'
ENABLE 't1'

* Make column family name short (several chars)

MongoDB 2.0.5 2V ALTOROS

v" Document-oriented

v" Distributed

v Load balancing by sharding

v Relies on memory mapped files for caching

e N “ 2
“ % g
R i
. o
ﬁiﬁsmﬁhﬂmM ‘%h D B‘ 2 | 0 5 @ Toms
" X g o 1 | |
i -

Mongo configuration

Sharding enabled on database
Mongo Wire Protocol + BSON Collection is sharded by key (PK)

Mon
Mong

/]

uter
Server

Mongod

MongoDB 2.0.5 2V ALTOROS

// use hostnames instead of IPs

var shards = [...];

I/l adding shards

for (var i = 0; i < shards.length; i++) {
db.runCommand({ addshard : shards[i] });

}
// enabling sharding

db.runCommand({ enablesharding : "UserDatabase” });
// sharding the collection by key

db.runCommand({ shardcollection : "UserDatabase.UserTable", key : { id: 1} });

MySQL Sharded 5.5.2.3 AIALTOROS

v RDBMS (no surprises here)
v Sharding is done on the client (YCSB) side
v Not scalable

MySQL Sharded 5.5.2.3 AALTOROS

YCSB Client
MySQL Configuration

Storage engine: MylISAM
key buffer _size: 6G

DDL for table creation

[sharding by the primary key]
CREATE TABLE user_table(

ycsb_key VARCHAR(32) PRIMARY KEY,

"/OGO /I specify 10 table columns (100 bytes each)
) ENGINE=MYISAM;

\)
|

mysqld 5.5.2.3

MySQL Cluster 7.2.5 2V ALTOROS

v" Relational
v Not really relational
No foreign keys
ACID: read committed transactions only
v Shared-nothing
v In-memory database
v Can be persistent (non-indexed columns)

~ MySQL Cluster 7.2.5 S

YCSE

MySQL Cluster Configuration
DataMemory: 3G
ndexMemory: 5G
DiskPageBufferMemory: 2G

MyS ster
Management Server Daemon

MySQL Cluster 7.2.5 Y ALTOROS

CREATE TABLE user_table(
ycsb_key VARCHAR(32) PRIMARY KEY,
... /I columns

MAX_ROWS=200000000 ENGINE=NDBCLUSTER PARTITION BY KEY(ycsb_key);

CREATE LOGEFILE ...; /! log files are created
CREATE TABLESPACE ...; // table space for disk persistence

ALTER TABLE user_table
TABLESPACE user _table space
STORAGE DISK
ENGINE=NDBCLUSTER; // assigning table space with target table

Riak 1.1.1 IALTOROS

v Key-value storage (Amazon’s Dynamo inspired)
v" Distributed

v" Scalable

v' Schema free

v Decentralized (no single point of failure)

Riak 1.1.1 D ALTOROS

Riak Configuration
storage backend: bitcask
// eleveldb backend was slow

Erlang (vm.arg) Configuration
// number of threads in async thread pool
+A 256
// kernel poll enabled
+K true
// number of concurrent ports and sockets

-env ERL_MAX_PORTS 4096
J

HTTP or Protobuf.

|
Riak daemon process

Schema\DDL
Is not required, just a bucket name

Load phase, [INSERT] NALTOROS

Load phase, 100.000.000 records * 1 KB, [INSERT]
18.0

16.0

¢ Cassandra 1.0

[
B
o

£ HBase 0.92.0
= 12.0 >
- X MongoDB 2.0.5
L 100 g
o X MySQL Cluster 7.2.5
Q .
¥ 80 -—a MySQL Sharded 5.5.2.3
g 6.0 Riak 1.1.1

4.0 -

2.0

0.0

0 5000 10000 15000 20000 25000

Throughput, ops/sec

HBase has unconquerable superiority in writes, and with a pre-created regions it showed
us up to 40K ops/sec. Cassandra also provides noticeable performance during loading
phase with around 15K ops/sec. MySQL Cluster can show much higher numbers in “just
iIn-memory” mode.

Read heavy workload (B), AV ALTOROS
[READ]

B workload (UPDATE 0.05, READ 0.95), [READ]
20
18

16

" \ =¢=Cassandra 1.0
E 14
o) HBase 0.92.0
c 12
g
= 19 ==\ongoDB 2.0.5
v)
o
§ 8 =<¥=MySQL Cluster 7.2.5
<
MySQL Sharded
4 5.5.2.3

0 500 1000 1500 2000 2500

Throughput, ops/sec

MySQL Sharded is a performance leader in reads. MongoDB is close to it accelerated by
the “memory mapped files” type of cache. MongoDB uses memory-mapped files for all
disk 1/0. Cassandra’s key and row caching allows very fast access to frequently
requested data. Random read performance is slower in HBase.

Read heavy workload (B),

[UPDATE]

50

45

40

35

30

25

20

Average latency, ms

15

10

B workload (UPDATE 0.05, READ 0.95), [UPDATE]

1000 1500 2000 2500

Throughput, ops/sec

@ALTOROS

=#=Cassandra 1.0
HBase 0.92.0
“*®»MongoDB 2.0.5
=*=MySQL Cluster 7.2.5
MySQL Sharded 5.5.2.3

Riak 1.1.1

Deferred log flush does the right job for HBase during mutation ops. Edits are committed
to the memstore firstly and then aggregated edits are flushed to HLog asynchronously.
Cassandra has great write throughput since writes are first written to the commit log with
append method which is fast operation. MongoDB's latency suffers from global write lock.
Riak behaves more stably than MongoDB.

Read only workload (C) D ALTOROS

C workload (READ 1)

20.0
18.0
16.0
" =$=Cassandra 1.0
E 140
= HBase 0.92.0
(&)
§ 12.0 “*®»MongoDB 2.0.5
0
@ 10.0 «*¥MySQL Cluster 7.2.5
©
§ 8.0 MySQL Sharded 5.5.2.3
<))
6.0 \ - Riak 1.1.1
4.0 . g
2.0
0.0
0 500 1000 1500 2000 2500 3000 3500

Throughput, ops/sec

Read only workload simulates data caching system, where data itself is constructed
elsewhere. Application just reads the data. B-Tree indexes make MySQL Sharded a

notable winner in this competition.

Scan ranges workload (E), 2N ALTOROS
[SCAN]

E workload (INSERT 0.05, SCAN 0.95), [SCAN]

 60.0 \
e

~50.0 .
§ | \ =¢=Cassandra 1.0
£400 | P HBase 0.92.0
— /\)

P

© 30.0 i
©
T 20.0
X

10.0

0.0
0 50 100 150 200 250 300 350 400 450

Throughput, ops/sec

HBase performs a bit better than Cassandra in range scans, though Cassandra range
scans improved noticeably from the 0.6 version presented in YCSB slides.

MongoDB 2.5 max throughput 20 ops/sec, latency >= 1 sec

MySQL Cluster 7.2.5 <10 ops/sec, latency =400 ms.

MySQL Sharded 5.5.2.3 <40 ops/sec, latency =400 ms.

Riak’s 1.1.1 bitcask storage engine doesn’t support range scans (eleveldb was slow

during load)

Insert mostly workload (G), 2N ALTOROS
[INSERT]

G workload (INSERT 0.9, READ 0.1), [INSERT]

18.0

16.0

14.0 =#=Cassandra 1.0
12.0 HBase 0.92.0

“*®MongoDB 2.0.5

10.0
5‘/ “**MySQL Cluster 7.2.5
8.0
)) MySQL Sharded 5.5.2.3
6.0 - -)?f Riak 1.1.1
) W
2.0 : .
00 AT ‘ ; : —
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Average latency, ms

\

Throughput, ops/sec

Workload with high volume inserts proves that HBase is a winner here, closely followed by
Cassandra. MySQL Cluster’s NDB engine also manages perfectly with intensive writes.

Before conclusions D ALTOROS

» |Is there a single winner?
» Who is worth the prize”?

Summary @ALTOROS

Answers
» You decide who is a winner
» NoSQL is a “different horses for different courses”
» Evaluate before choosing the “horse”
» Construct your own or use existing workloads
 Benchmark it
* Tune database!
* Benchmark it again

Amazon EC2 observations
» Scales perfectly for NoSQL
» EBS slowes down database on reads

» RAIDO it! Use 4 disk in array (good choice), some reported
performance degraded with higher number (6 and >)

» Don’t be sparing of RAM!

Thank you for attention D ALTOROS

mailto:
sergey.bushik@altoros.com

skype:
siarhei_bushyk

linkedin:
http://www.linkedin.com/pub/sergey-bushik/25/685/199

