
May 2012 A pragmatic approach to creating services 1

A pragmatic approach to creating services

using Windows Communication Foundation

Captator
Tlf: +45 8620 4242
www.captator.dk

Henrik Lykke Nielsen
Softwarearkitekt, Microsoft Regional Director for Denmark
lykke@captator.dk
Mobile: +45 2237 3311

Agenda

Goals

WCF based communication

Requests and responses

Service Implementation

ServiceExecutor

Multitenancy

Authentication

Validation

Logging

Test

Documentation

May 2012 A pragmatic approach to creating services 2

Our Goals

The service model…

should make it easy to reuse service implementations

should make it easy to implement centralized logic

should support a strict separation of domain and generic

logic

should only impose a minimal overhead when

implementing new service operations

should make it easy to validate requests

must be secure - the services must be easily securable

should be scalable

should make the services easily testable

should support (automatically generated) service

documentation

May 2012 A pragmatic approach to creating services 3

Communication

Communication Patterns

SOAP

XML/JSON over HTTP - URLs denotes operations

Simple .NET method calls

SOAP and HTTP headers (and other transport

specific mechanisms) are only used for transport

related issues

Request/response based service definitions

May 2012 A pragmatic approach to creating services 4

Technologies

WCF (Windows Communication Foundation)

Various Clients such as

ASP.NET, Windows clients, test clients

Network access / simple method calls

Silverlight, mobile clients

Network access

Hosting

IIS / self hosting

Standard Windows Server / Windows Azure / …

May 2012 A pragmatic approach to creating services 5

Communication using WCF

Service definition

A service contract is specified by defining an interface

decorated by attributes

Service implementation

A service is implemented by implementing the contract

(the interface)

WCF supports

ServiceHost: SOAP

WebServiceHost: XML/JSON over HTTP

We primarily use POST (WebInvoke)

We occasionally use GET (WebGet) for manual browser

execution and for limited clients

May 2012 A pragmatic approach to creating services 6

WCF Contracts and Implementation

May 2012 A pragmatic approach to creating services 7

Services are specified by the ServiceContract-

attribute

Operations are specified by the OperationContract-

attribute and the WebInvoke-/WebGet-attributes

Contract

Implementation

[System.ServiceModel.ServiceContract(Name = "SystemService")]
public interface ISystemService
{
 [System.ServiceModel.OperationContract()]
 [WebInvoke(UriTemplate = "GetCountries")]
 GetCountriesResponse GetCountries(GetCountriesRequest request);

GetCountriesResponse ISystemService.GetCountries(
 GetCountriesRequest request)
{ /* ... */ }

XML/JSON over HTTP

SOAP

WCF Web Message Formats

WebServiceHost defines a

WebHttpEndpoint.AutomaticFormatSelectionEnabled

property

We set the response format using our alternative

SetWebMessageFormat-method based on

1. the “format” query string parameter
 http://captator.com/Services/1/SystemService/GetCountries?format=json

 http://captator.com/Services/1/SystemService/GetCountries?format=xml

2. the client request’s HTTP accept header

3. the client request’s HTTP content type

4. the default format set on the WCF host

May 2012 A pragmatic approach to creating services 8

Requests

Input values are wrapped in a request-object

May 2012 A pragmatic approach to creating services 9

RequestBase

GetCountriesRequest

public class EditUserRequest : AuthenticatedRequest
{
 public int FirstName { get; set; }

 // ...
}

LogoutRequest

EditUserRequest

LicenseKey

AuthenticatedRequest

AuthenticatedToken

Responses

Return values are wrapped in a response-object

All operations have an associated pair of specific

request- and response-objects

GetCountriesRequest, GetCountriesResponse

RemoveFriendRequest, RemoveFriendResponse

 May 2012 A pragmatic approach to creating services 10

ResponseBase

LogoutResponse GetCountriesResponse

public class EditUserResponse : ResponseBase
{
}

EditUserResponse

Implementing Services

Diagnostic Ping-operations are available to all

services inheriting from BaseService

May 2012 A pragmatic approach to creating services 11

ServiceBase

BaseService

LoginService

UserService

IBaseService
• Ping
• PingUsingGet
• ...

IUserService
• CreateUser
• EditUser
• ...

ILoginService
• Login
• Logout

Service Implementation

Operations are typically simple DAL calls

ServiceExecutor is defined in ServiceBase

May 2012 A pragmatic approach to creating services 12

public class SystemService : BaseService, ISystemService
{
 private Data.SystemDalBase _systemDal;

 public SystemService() {
 _systemDal = ...
 }

 GetCountryByIdResponse ISystemService.GetCountryById
 (GetCountryByIdRequest request)
 {
 return ServiceExecutor.Execute(request, () =>
 {
 Country country = _systemDal.GetCountryById(request.Id);

 return new SystemServiceEntities.GetCountryByIdResponse()
 { Country = country };
 });
 }

ServiceExecutor

The ServiceExecutor executes the service code

With or without a system transaction

Authenticated or not

May 2012 A pragmatic approach to creating services 13

public class ServiceExecutor
{
 public ServiceCallContextBase CallContext { get; private set; }

 public T ExecuteInTransaction<T>(AuthenticatedRequest request,
 System.Func<T> func) where T : ResponseBase, new()

 public T Execute<T>(AuthenticatedRequest request,
 System.Func<T> func) where T : ResponseBase, new()

 public T ExecuteInTransaction<T>(RequestBase request,
 System.Func<T> func) where T : ResponseBase, new()

 public T Execute<T>(RequestBase request,
 System.Func<T> func) where T : ResponseBase, new()

Carries call specific info such as

login, language, tenant, call time etc.

ServiceExecutor

Implements the general service code

May 2012 A pragmatic approach to creating services 14

public class ServiceExecutor
{
 public T Execute<T>(AuthenticatedRequest request,
 System.Func<T> func) where T : ResponseBase, new()
 {
 // Validate request.AuthenticatedToken

 return Execute((RequestBase)request, func);
 }

 public T Execute<T>(RequestBase request,
 System.Func<T> func) where T : ResponseBase, new()
 {
 // Check validation attributes on the request object etc.

 T result = func();

 // Log the service call

 return result;
 }

Very small excerpt of the code

ServiceExecutor

The ServiceExecutor class centralizes all general

aspects of executing a service operation

Transactions

Multitenancy

Authentication

Service authorization based on user roles and/or tenant

Validation

Domain oriented validation

Validation that data in request and response objects is

allowed for the authenticated user (belongs to its tenant)

ExceptionHandling

Logging

May 2012 A pragmatic approach to creating services 15

Multitenancy

Tenants and AuthenticatedTokens are stored in a

HostingMaster database common for all tenants

Domain data and users are stored in domain

databases that are specified in HostingMaster

All tables with tenant specific data has a TenantId

column
All tenant specific queries must have a

TenantId-predicate as part of the WHERE clause

May 2012 A pragmatic approach to creating services 16

Multitenancy refers to a principle in software architecture where a single instance of the software

runs on a server, serving multiple client organizations (tenants). Multitenancy is contrasted with

a multi-instance architecture where separate software instances (or hardware systems) are set

up for different client organizations. With a multitenant architecture, a software application is

designed to virtually partition its data and configuration so that each client organization works

with a customized virtual application instance.

wikipedia

Multitenancy

Tenancy database modes

Shared database and shared schema

Tenant shares database and database schema with other tenants

Shared database and separate schema

Tenant shares database with other tenants but the database user

is associated with a tenant specific schema

Separate database

Tenant has a separate database

Separate server

Tenant has a separate database server

Implementing the “Shared database and shared schema”

mode enables all four modes

May 2012 A pragmatic approach to creating services 17

Id TenantId Name

Id Name

dbo.MyTable

TenantXX.MyTable

Authentication

Various login operations

User name and password

Login on behalf of another user

Login Link – typically in email

Federated login / single sign-on

Optional IP lock

Successful authentication results in an

AuthenticatedToken

If the AuthenticatedToken is not recognized or has timed

out an exception is thrown

The AuthenticatedToken must be passed in at each

operation that takes an AuthenticatedRequest

 May 2012 A pragmatic approach to creating services 18

Authentication

May 2012 A pragmatic approach to creating services 19

L
o
g
i
n
S
e
r
v
i
c
e

U
s
e
r
S
e
r
v
i
c
e

HostingMaster

Credentials

AuthenticatedToken

Domain
Database

AuthenticatedToken

Validation

Properties of request types are annotated with

validation attributes

System.ComponentModel.DataAnnotations.ValidationAttribute

Can automatically be included in documentation

General purpose examples:

AcceptedStrings, Maximum, Minimum, Range, RegEx,

Required, StringLength, ValidEmail etc.

May 2012 A pragmatic approach to creating services 20

[ValidEmail] [UniqueEmail()]
public string Email { get; set; }

[RegEx(@"^\S{4,}$")]
public string ClearTextPassword { get; set; }

[StringLength(3)] [UniqueNickname()]
public string Nickname { get; set; }

Validation

ServiceExecutor validates the request object by

validating all validation attributes

Validation often require access to external data

FriendshipExists, FriendshipNotExists, TableEntryExists,

UniqueEmail, UniqueNickname

Attributes can implement an interface that

signals that the validation is performed by executing a

SQL query

can return the query for bundled execution

(used for optimizing validation)

May 2012 A pragmatic approach to creating services 21

Logging

Purposes of logging

Debugging, performance tuning, statistics, auditing

Various information is logged

(Client) FunctionLog

ServiceLog

Request and response objects can optionally be logged

DataLog

Parameters / the actual SQL can optionally be logged

ActivityLog

ExceptionLog

Service call log entries are linked to make a call

trackable

May 2012 A pragmatic approach to creating services 22

Logging to a separate DataLog database

A string dictionary is used for reducing log size

Logging is asynchronous to enhance performance

Data

Logging

May 2012 A pragmatic approach to creating services 23

U
s
e
r
S
e
r
v
i
c
e

Database

ClientFunction Service operation Data operation

Options for Calling Services from .NET

1) Use standard network APIs

Rather cumbersome

2) Use a WCF channel

3) Use standard .NET method calls

Local execution, tests etc…

May 2012 A pragmatic approach to creating services 24

var uri = new Uri("http://mydemo.cloudapp.net/SystemService.svc");

var factory = new WebChannelFactory<ISystemService>(uri);
ISystemService systemService = factory.CreateChannel();

GetCountriesResponse response = systemService.GetCountries
 (new GetCountriesRequest() { SystemKey = _systemKey });

ISystemService systemService = new SystemService();

GetCountriesResponse response = systemService.GetCountries
 (new GetCountriesRequest() { SystemKey = _systemKey });

Testing

Automatically repeatable tests

Uses MS Test in Visual Studio

Testing of

communication by calling the services using WCF

Only a few operations need to be tested with respect to WCF

communication and generic service model implementation

service functionality by calling the services as regular

.NET classes

All service operations should be tested

May 2012 A pragmatic approach to creating services 25

Testing

Code exclusively against the interface!

The same code whether calling an XML/JSON over HTTP

service, a SOAP service or a .NET component

Builder extension-methods such as

AddLicenseKey, AddAuthenticatedToken, ...

CreateTestData utility-methods

May 2012 A pragmatic approach to creating services 26

var request = new GetCountryByIdRequest()
{
 Id = 1
}.AddLicenseKey();

GetCountryByIdResponse response =
 systemService.GetCountryById(request);

Assert.AreEqual("DK", response.Country.CountryCode);

Service Browser

Alternative for WCF Web HTTP Help Page

ASP.NET MVC component used for showing

metadata for XML/JSON over HTTP services

Reflection for finding services, operations,

datatypes and validation rules

Leverages XML comments

Custom DevelopmentInfo-attribute

DevelopmentStatus: Undefined, Planned, InDevelopment, Released, Internal

TestStatus: Undefined, Planned, InDevelopment, Acceptable

May 2012 A pragmatic approach to creating services 27

[WebInvoke(UriTemplate = "EditUser")]
[DevelopmentInfo(DevelopmentStatus.Released, TestStatus = TestStatus.Acceptable)]
EditUserResponse IUserService.EditUser(EditUserRequest request);

Service Browser

May 2012 A pragmatic approach to creating services 28

May 2012 A pragmatic approach to creating services 29

Questions?

www.captator.dk
training, consulting, software development, ...

http://www.captator.dk/

