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the story so far



Users Rules Reports Analytics







hexagonal business capabilities
owning their own data
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Each capability decomposed into smaller applications based on your 
functional and cross-functional requirements



Sharing a uniform interface







<html>
<body>
      <div>
          <span id="firstName">James</span>
          <span id="lastName">Lewis</span>
      </div>
      <div id="links">
          <a rel="self"
             href="/users/ae3fc"
             type="application/vnd.foobar.user+xml">Register User</a>

          <form id="update" method="POST" name="updateForm" action="/users/ae3fc">
              <input id="updatedFirstName" type="text" name="firstName" value="James"/>
              <input type="text" name="lastName" value="lewis"/>
              <input type="submit" name="updateButton" value="update"/>
          </form>

          <a rel="userIndex"
             href="/users/index"
             type="text/html">Search Users</a>>
      </div>
  </body>
</html>
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application/atom+json

/user-request

/user-request/1223



Use standard application protocols to bridge 
the semantic gap





The semantic gap characterises the difference between two 
descriptions of an object by different linguistic representations, for 
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap
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The semantic gap characterises the difference between two 
descriptions of an object by different linguistic representations, for 
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap

rel=”register”

rel=”create”

http://en.wikipedia.org/wiki/Semantic_gap
http://en.wikipedia.org/wiki/Semantic_gap


RFC 5023 is an example





POST /users



POST /users

POST /users

POST /users HTTP/1.1
    Host: example.org
    User-Agent: Thingio/1.0
    Authorization: Basic ZGFmZnk6c2VjZXJldA==
    Content-Type: application/atom+xml
    Content-Length: nnn
    Slug: First Post

    <?xml version="1.0" ?>
    <entry xmlns="http://www.w3.org/2005/Atom">
      <title>James Lewis</title>
      <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
      <updated>2003-12-13T18:30:02Z</updated>
      <author><name>James Lewis</name></author>
      <content>stuff</content>
    </entry>
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application/atom+json

/user-request

/user-request/1223



small, with a single responsibility
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Object

Object

Object



Object

my conjecture

“objects should be no bigger than my head”



and while I have a giant head, its pretty empty so thats ok...



Object
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as we chunk up domains, each domain should be small 
enough to fit in my head
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in this case, it meant 100’s of lines of code per application



Product Teams organised around Product Lines



pmo
ops

testers
developers
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Conway’s Law

“…organizations which design systems … are constrained to produce designs
which are copies of the communication structure of those organizations”(sic)
Melvin	  Conway,	  1968



Conway’s Law

“…organizations which design systems … are constrained to produce designs
which are copies of the communication structure of those organizations”(sic)
Melvin	  Conway,	  1968

“If you ask seven people to write a compiler, you get a seven pass compiler”

Dan	  North,	  circa	  2006
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whats the difference between 
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~68% said yes ~ 32% said no



~80% are using automated provisioning ~20%
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independently scalable, deployable, 
changeable, replaceable applications

built, deployed and 
scaled  automatically



building micro-services
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if you have lots of small applications all doing one thing

observing other resources, say



if you have lots of small applications all doing one thing

observing other resources, say

it is harder to put together a build pipeline for the components



Joining multiple applications 

If tests fail for
 application 

A, application B can still 

proceed using th
e last 

“good” version o
f A 

Application A

Application B

Application 
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Live



Federated pipelines 

Provider team could 

host instances for 
testing … 

… or provide 
packages for 

deployment by the 
consumer team Consumer 

contract tests

Pre-release 
testing Production

Provider

Consumer Production



Federated pipelines 
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publishes test 
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there is a little bit more in here...



deploying many services



infrastructure automation



phoenix infrastructure



autoscaling and status aware
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and if the lovely Mr Nygard taught us anything it was to test 
with as realistic environments as early as possible
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vagrant looks a bit like 
this:

$ vagrant box add base http://files.vagrantup.com/lucid32.box
$ vagrant init
$ vagrant up

tough eh? Even I can use it

http://vagrantup.com/v1/docs/getting-started/index.html

under the hood, it applies a puppet manifest (or insert provisioning tool 
file format)

http://vagrantup.com/v1/docs/getting-started/index.html
http://vagrantup.com/v1/docs/getting-started/index.html


multiple VM’s are pretty easy too



multiple VM’s are pretty easy too

Vagrant::Config.run do |config|
  config.vm.define :web do |web_config|
    web_config.vm.box = "web"
    web_config.vm.forward_port 80, 8080
  end

  config.vm.define :db do |db_config|
    db_config.vm.box = "db"
    db_config.vm.forward_port 3306, 3306
  end
end



multiple VM’s are pretty easy too

Vagrant::Config.run do |config|
  config.vm.define :web do |web_config|
    web_config.vm.box = "web"
    web_config.vm.forward_port 80, 8080
  end

  config.vm.define :db do |db_config|
    db_config.vm.box = "db"
    db_config.vm.forward_port 3306, 3306
  end
end

it will take care of the networking business for you

http://vagrantup.com/v1/docs/getting-started/index.html

http://vagrantup.com/v1/docs/getting-started/index.html
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hey, it really does 
work on my 
machine!

so now we can deploy our app locally to 
multiple VM’s to test before pushing

which is a bit of a win in my book
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we specify the dependencies for our 
application declaratively

class agent( $working_dir, $config_opts ) {
  require platform::sun-java
  require platform::endeavour-service
  
  File { owner => 0, group => 0, mode => 0644 }
  
  file { '/etc/motd':
    content => "Welcome to your Agent Node, managed by Puppet.\n"
  }
  
  platform::service::config {"service_configuration" :
      servicename => "agent",
      servicefilesource => "$working_dir/agent-1.0-SNAPSHOT.jar",
      servicefilename => "agent.jar",
      service_config_opts => $config_opts,
      require => Exec['install-java'];
  }
}
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and we abstract away the fact that 
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or to an IaaS platform like AWS
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@task
def deploy_environment(environment, build_number):
    target_env = ENVIRONMENTS[environment]
    deployment = Deployment(build_number,target_env)
    deployment.install(SERVICES)

@task
def end_to_end_test_against(environment, build_number):
    target_env = ENVIRONMENTS[environment]
    deployment = Deployment(build_number,target_env)
    deployment.run_end_to_end_tests(EndToEndTest())



and there is tooling available to do this too

@task
def deploy_environment(environment, build_number):
    target_env = ENVIRONMENTS[environment]
    deployment = Deployment(build_number,target_env)
    deployment.install(SERVICES)

@task
def end_to_end_test_against(environment, build_number):
    target_env = ENVIRONMENTS[environment]
    deployment = Deployment(build_number,target_env)
    deployment.run_end_to_end_tests(EndToEndTest())

this is a tool called Fabric
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it’s a wrapper over SSH so you can run commands against anything you 
have SSH access to

class RemoteServer(ApplicationServer):

    def deploy_service(self, target_env, service_name, artefact_repo):
        with settings(user='service', host_string=self.host, key_filename='~/.ssh/
deploy'):
            run('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
            run('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
                artefact_repo.build_number
            )
            run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
                artefact_repo.build_number,
                service_name,
                artefact_repo.build_number,
                self.install_dir,
                target_env.property_file_name)
            )

https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy


class RemoteServer(ApplicationServer):

    def deploy_service(self, target_env, service_name, artefact_repo):
        with settings(user='service', host_string=self.host, key_filename='~/.ssh/
deploy'):
            run('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
            run('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
                artefact_repo.build_number
            )
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                artefact_repo.build_number,
                service_name,
                artefact_repo.build_number,
                self.install_dir,
                target_env.property_file_name)
            )

class LocalServer(ApplicationServer):

    def deploy_service(self, target_env, service_name, artefact_repo):
        local('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
        local('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
            artefact_repo.build_number
        )
        local('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
            artefact_repo.build_number,
            service_name,
            artefact_repo.build_number,
            self.install_dir,
            target_env.property_file_name)
        )
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    def deploy_service(self, target_env, service_name, artefact_repo):
        with settings(user='service', host_string=self.host, key_filename='~/.ssh/
deploy'):
            run('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
            run('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
                artefact_repo.build_number
            )
            run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
                artefact_repo.build_number,
                service_name,
                artefact_repo.build_number,
                self.install_dir,
                target_env.property_file_name)
            )

class LocalServer(ApplicationServer):

    def deploy_service(self, target_env, service_name, artefact_repo):
        local('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
        local('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
            artefact_repo.build_number
        )
        local('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
            artefact_repo.build_number,
            service_name,
            artefact_repo.build_number,
            self.install_dir,
            target_env.property_file_name)
        )

and yes, the astute among you will have noticed the awful duplication
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declarative environment provisioning

prod:
  nodes:
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [hello_world]
    security_groups: [ spicy-beef ]
    availability_zone: us-east-1a
    type: phoenix.providers.aws_provider.AWSNodeDefinition
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [hello_world]
    security_groups: [ spicy-beef ]
    availability_zone: us-east-1b
    type: phoenix.providers.aws_provider.AWSNodeDefinition
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [apache]
    type: phoenix.providers.aws_provider.AWSNodeDefinition
    security_groups: [ spicy-beef ]

  node_provider:
    class_name: AWSNodeProvider
    public_api_key: {{ aws_public_api_key }}
    private_api_key: {{ aws_private_api_key }}



declarative environment provisioning

prod:
  nodes:
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [hello_world]
    security_groups: [ spicy-beef ]
    availability_zone: us-east-1a
    type: phoenix.providers.aws_provider.AWSNodeDefinition
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [hello_world]
    security_groups: [ spicy-beef ]
    availability_zone: us-east-1b
    type: phoenix.providers.aws_provider.AWSNodeDefinition
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [apache]
    type: phoenix.providers.aws_provider.AWSNodeDefinition
    security_groups: [ spicy-beef ]

  node_provider:
    class_name: AWSNodeProvider
    public_api_key: {{ aws_public_api_key }}
    private_api_key: {{ aws_private_api_key }}

apache:
  puppet_module_directory : puppet
  puppet_manifest : apache.pp
  service_configurator: 
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
  connectivity:
    - protocol: tcp
      ports: [ 80 ]
      allowed: [ WORLD ]

hello_world:
  puppet_module_directory : puppet
  puppet_manifest : hello_world.pp
  service_configurator: 
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
  connectivity:
    - protocol: tcp
      ports: [ 8080, 8081 ]
      allowed: [ WORLD ]

mongo:
  puppet_module_directory : puppet
  puppet_manifest : mongo.pp
  service_configurator: 
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
  connectivity:
    - protocol: tcp
      ports: [ 27017 ]
      allowed: [ hello_world ] 



declarative environment provisioning

prod:
  nodes:
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [hello_world]
    security_groups: [ spicy-beef ]
    availability_zone: us-east-1a
    type: phoenix.providers.aws_provider.AWSNodeDefinition
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [hello_world]
    security_groups: [ spicy-beef ]
    availability_zone: us-east-1b
    type: phoenix.providers.aws_provider.AWSNodeDefinition
  - ami_id: ami-4dad7424
    size:   t1.micro
    credentials_name: us-east-ssh
    aws_key_name : test
    services: [apache]
    type: phoenix.providers.aws_provider.AWSNodeDefinition
    security_groups: [ spicy-beef ]

  node_provider:
    class_name: AWSNodeProvider
    public_api_key: {{ aws_public_api_key }}
    private_api_key: {{ aws_private_api_key }}

apache:
  puppet_module_directory : puppet
  puppet_manifest : apache.pp
  service_configurator: 
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
  connectivity:
    - protocol: tcp
      ports: [ 80 ]
      allowed: [ WORLD ]

hello_world:
  puppet_module_directory : puppet
  puppet_manifest : hello_world.pp
  service_configurator: 
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
  connectivity:
    - protocol: tcp
      ports: [ 8080, 8081 ]
      allowed: [ WORLD ]

mongo:
  puppet_module_directory : puppet
  puppet_manifest : mongo.pp
  service_configurator: 
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
  connectivity:
    - protocol: tcp
      ports: [ 27017 ]
      allowed: [ hello_world ] 

OpsWorks

Checkmate



Deployment
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the Fowler bomb

“it pushes the accidental complexity into the infrastructure”

Martin Fowler

turns out that monitoring and logging have a big 
part to play too
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each of these should report metrics 
at a well known location

LB

/status these metrics can displayed locally

and pushed to centralised monitoring 
tools

monitoring needs to be a first class concern

Status aware applications are the way forward



graphite for example
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for example, if a downstream service fails

LB

HTTP/1.1 503 Service Unavailable

X
GET /status

the application could block incoming requests, or notify operations



in java land there is a nice library from the good folks at 
yammer that allows you to do a lot of this

http://metrics.codahale.com

import com.yammer.metrics.core.HealthCheck;

public class NamedHealthCheck extends HealthCheck {

    private final Pingable pingable;
    private final String name;

    public NamedHealthCheck(Pingable pingable, String name) {
        super(name);
        this.pingable = pingable;
        this.name = name;
    }

    @Override
    protected Result check() {
        try {
            return (pingable.ping()) 

? Result.healthy() 
: Result.unhealthy(String.format("Could not connect to the %s", name));

        } catch (Exception e) {
            return Result.unhealthy(String.format("Could not connect to the %s", name));
        }

    }

}

http://metrics.codahale.com/getting-started/#getting-started
http://metrics.codahale.com/getting-started/#getting-started
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then there are the groovy new (and some not so new) 
tools on the block

• Graylog2
• Syslog-ng
• Logstash
• Scribe
• Splunk
• riemann

and a final shout out to zipkin for distributed system monitoring



standing on the 
shoulders of giants





Lions commentary on Unix 2nd edition

The Unix Philosophy
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to build systems is to make trade-offs

maintainability vs time-to-market

throughput vs cost

portability vs deployability

infrastructure automation and tooling is 
essential to get the benefits of this approach



thanks

jalewis@thoughtworks.com : @boicy : http://bovon.org
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