
managing micro-services
distributed systems and your infrastructure

jalewis@thoughtworks.com : @boicy : http://bovon.org

mailto:jalewis@thoughtworks.com
mailto:jalewis@thoughtworks.com
http://bovon.org
http://bovon.org

recap on micro-services

some approaches to building them

some approaches to deploying them

todays topics

James Lewis
Engineer, TAB

the story so far

Users Rules Reports Analytics

hexagonal business capabilities
owning their own data

12

13

Each capability decomposed into smaller applications based on your
functional and cross-functional requirements

Sharing a uniform interface

<html>
<body>
 <div>
 James
 Lewis
 </div>
 <div id="links">
 <a rel="self"
 href="/users/ae3fc"
 type="application/vnd.foobar.user+xml">Register User

 <form id="update" method="POST" name="updateForm" action="/users/ae3fc">
 <input id="updatedFirstName" type="text" name="firstName" value="James"/>
 <input type="text" name="lastName" value="lewis"/>
 <input type="submit" name="updateButton" value="update"/>
 </form>

 <a rel="userIndex"
 href="/users/index"
 type="text/html">Search Users>
 </div>
 </body>
</html>

17

17

application/atom+json

/user-request

/user-request/1223

Use standard application protocols to bridge
the semantic gap

The semantic gap characterises the difference between two
descriptions of an object by different linguistic representations, for
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap

http://en.wikipedia.org/wiki/Semantic_gap
http://en.wikipedia.org/wiki/Semantic_gap

The semantic gap characterises the difference between two
descriptions of an object by different linguistic representations, for
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap

rel=”register”

http://en.wikipedia.org/wiki/Semantic_gap
http://en.wikipedia.org/wiki/Semantic_gap

The semantic gap characterises the difference between two
descriptions of an object by different linguistic representations, for
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap

rel=”register”

rel=”create”

http://en.wikipedia.org/wiki/Semantic_gap
http://en.wikipedia.org/wiki/Semantic_gap

RFC 5023 is an example

POST /users

POST /users

POST /users

POST /users HTTP/1.1
 Host: example.org
 User-Agent: Thingio/1.0
 Authorization: Basic ZGFmZnk6c2VjZXJldA==
 Content-Type: application/atom+xml
 Content-Length: nnn
 Slug: First Post

 <?xml version="1.0" ?>
 <entry xmlns="http://www.w3.org/2005/Atom">
 <title>James Lewis</title>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
 <updated>2003-12-13T18:30:02Z</updated>
 <author><name>James Lewis</name></author>
 <content>stuff</content>
 </entry>

23

application/atom+json

/user-request

/user-request/1223

small, with a single responsibility

Object

Object

Object

Object

Object

my conjecture

“objects should be no bigger than my head”

and while I have a giant head, its pretty empty so thats ok...

Object

Object

Object

Object

Object

as we chunk up domains, each domain should be small
enough to fit in my head

35

in this case, it meant 100’s of lines of code per application

Product Teams organised around Product Lines

pmo
ops

testers
developers

THE BUSINESS

pmo
ops

testers
developers

THE BUSINESS

Conway’s Law

Conway’s Law

“…organizations which design systems … are constrained to produce designs
which are copies of the communication structure of those organizations”(sic)
Melvin	 Conway,	 1968

Conway’s Law

“…organizations which design systems … are constrained to produce designs
which are copies of the communication structure of those organizations”(sic)
Melvin	 Conway,	 1968

“If you ask seven people to write a compiler, you get a seven pass compiler”

Dan	 North,	 circa	 2006

independently deployable and scalable

independently scalable, deployable,
changeable, replaceable applications

whats the difference between
building, deploying and testing this:

whats the difference between
building, deploying and testing this:

and this?

~68% said yes ~ 32% said no

~80% are using automated provisioning ~20%

independently scalable, deployable,
changeable, replaceable applications

independently scalable, deployable,
changeable, replaceable applications

built, deployed and
scaled automatically

building micro-services

a basic build pipeline

a basic build pipeline

hey, it works on
my machine!

a basic build pipeline

hey, it works on
my machine!

I GUESS ITS TIME
TO COMMIT AND

PUSH

a basic build pipeline

hey, it works on
my machine!

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

I GUESS ITS TIME
TO COMMIT AND

PUSH

if you have lots of small applications all doing one thing

observing other resources, say

if you have lots of small applications all doing one thing

observing other resources, say

it is harder to put together a build pipeline for the components

Joining multiple applications

If tests fail for
 application

A, application B can still

proceed using th
e last

“good” version o
f A

Application A

Application B

Application
Testing

Complete

Integration
Testing

Application
Testing

Complete

Live

Federated pipelines

Provider team could

host instances for
testing …

… or provide
packages for

deployment by the
consumer team Consumer

contract tests

Pre-release
testing Production

Provider

Consumer Production

Federated pipelines

Consumer team
publishes test

scripts to represent

their requirements

Provider pipeline runs

consumer tests to ensure the

release won’t break the

consumer in production

Consumer
contract tests

Pre-release
testing Production

Provider

Consumer Production

Se
rv
ic
e'
3

Build
Unit
Test

Acceptance
Test Publish

Build
Unit
Test

Acceptance
Test

Unit
Test

Acceptance
TestBuild

Se
rv
ic
e'
2

Integra;onPublish

Publish

Ar;fact'Repository

V'1.2.3.4

V'2.4.3.5

Acceptance
Test

Performance
Tests

Build
Unit
Test

Unit
TestBuild

Ca
ll'

Ce
nt
re

M
em

be
r'

W
eb

si
te

V'4.8.3.1

V'4.3.2.7
Performance

Tests

Pr
od

uc
t

Performance
Tests

Consumer'Driven
Tests

Publish

Publish

se
rv
ic
e'
1

Component(build

Product(build

Ar2fact(Repository

Integra2on(with(product
version

Integra2on(with(consumers

Acceptance
Tests

Acceptance
Tests

V'1.7.8.9

there is a little bit more in here...

deploying many services

infrastructure automation

phoenix infrastructure

autoscaling and status aware

we saw earlier the basic build pipeline

we saw earlier the basic build pipeline

hey, it works on
my machine!

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

I GUESS ITS TIME
TO COMMIT AND

PUSH

which environments do you deploy into?

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

hey, it works on
my machine!

which environments do you deploy into?

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

run locally on
build machine

hey, it works on
my machine!

which environments do you deploy into?

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

run locally on
build machine

deployed
locally on

build machine

hey, it works on
my machine!

which environments do you deploy into?

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

run locally on
build machine

deployed
locally on

build machine

deployed into
integration

environment

hey, it works on
my machine!

which environments do you deploy into?

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

run locally on
build machine

deployed
locally on

build machine

deployed into
integration

environment

deployed into
UAT

environment

hey, it works on
my machine!

which environments do you deploy into?

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

run locally on
build machine

deployed
locally on

build machine

deployed into
integration

environment

deployed into
UAT

environment

deployed into
performance
environment

hey, it works on
my machine!

its often only when you start pushing out to bigger environments
that you start seeing problems

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

run locally on
build machine

deployed
locally on

build machine

deployed into
integration

environment

deployed into
UAT

environment

deployed into
performance
environment

hey, it works on
my machine!

its often only when you start pushing out to bigger environments
that you start seeing problems

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

run locally on
build machine

deployed
locally on

build machine

deployed into
integration

environment

deployed into
UAT

environment

deployed into
performance
environment

hey, it works on
my machine!

and if the lovely Mr Nygard taught us anything it was to test
with as realistic environments as early as possible

we can use virtualisation on our development
machines to bring up whole environments at once

we can use virtualisation on our development
machines to bring up whole environments at once

Vagrant

we can use virtualisation on our development
machines to bring up whole environments at once

Vagrant

lxc

vagrant looks a bit like
this:

vagrant looks a bit like
this:

$ vagrant box add base http://files.vagrantup.com/lucid32.box
$ vagrant init
$ vagrant up

vagrant looks a bit like
this:

$ vagrant box add base http://files.vagrantup.com/lucid32.box
$ vagrant init
$ vagrant up

tough eh? Even I can use it

vagrant looks a bit like
this:

$ vagrant box add base http://files.vagrantup.com/lucid32.box
$ vagrant init
$ vagrant up

tough eh? Even I can use it

http://vagrantup.com/v1/docs/getting-started/index.html

under the hood, it applies a puppet manifest (or insert provisioning tool
file format)

http://vagrantup.com/v1/docs/getting-started/index.html
http://vagrantup.com/v1/docs/getting-started/index.html

multiple VM’s are pretty easy too

multiple VM’s are pretty easy too

Vagrant::Config.run do |config|
 config.vm.define :web do |web_config|
 web_config.vm.box = "web"
 web_config.vm.forward_port 80, 8080
 end

 config.vm.define :db do |db_config|
 db_config.vm.box = "db"
 db_config.vm.forward_port 3306, 3306
 end
end

multiple VM’s are pretty easy too

Vagrant::Config.run do |config|
 config.vm.define :web do |web_config|
 web_config.vm.box = "web"
 web_config.vm.forward_port 80, 8080
 end

 config.vm.define :db do |db_config|
 db_config.vm.box = "db"
 db_config.vm.forward_port 3306, 3306
 end
end

it will take care of the networking business for you

http://vagrantup.com/v1/docs/getting-started/index.html

http://vagrantup.com/v1/docs/getting-started/index.html
http://vagrantup.com/v1/docs/getting-started/index.html

so now we can deploy our app locally to
multiple VM’s to test before pushing

hey, it really does
work on my
machine!

so now we can deploy our app locally to
multiple VM’s to test before pushing

hey, it really does
work on my
machine!

so now we can deploy our app locally to
multiple VM’s to test before pushing

which is a bit of a win in my book

we specify the dependencies for our
application declaratively

we specify the dependencies for our
application declaratively

class agent($working_dir, $config_opts) {
 require platform::sun-java
 require platform::endeavour-service

 File { owner => 0, group => 0, mode => 0644 }

 file { '/etc/motd':
 content => "Welcome to your Agent Node, managed by Puppet.\n"
 }

 platform::service::config {"service_configuration" :
 servicename => "agent",
 servicefilesource => "$working_dir/agent-1.0-SNAPSHOT.jar",
 servicefilename => "agent.jar",
 service_config_opts => $config_opts,
 require => Exec['install-java'];
 }
}

and we apply this to each environment we
deploy our application to

class agent($working_dir, $config_opts) {
 require platform::sun-java
 require platform::endeavour-service

 File { owner => 0, group => 0, mode => 0644 }

 file { '/etc/motd':
 content => "Welcome to your Agent Node, managed by Puppet.\n"
 }

 platform::service::config {"service_configuration" :
 servicename => "agent",
 servicefilesource => "$working_dir/agent-1.0-SNAPSHOT.jar",
 servicefilename => "agent.jar",
 service_config_opts => $config_opts,
 require => Exec['install-java'];
 }
}

and we apply this to each environment we
deploy our application to

class agent($working_dir, $config_opts) {
 require platform::sun-java
 require platform::endeavour-service

 File { owner => 0, group => 0, mode => 0644 }

 file { '/etc/motd':
 content => "Welcome to your Agent Node, managed by Puppet.\n"
 }

 platform::service::config {"service_configuration" :
 servicename => "agent",
 servicefilesource => "$working_dir/agent-1.0-SNAPSHOT.jar",
 servicefilename => "agent.jar",
 service_config_opts => $config_opts,
 require => Exec['install-java'];
 }
}

and we apply this to each environment we
deploy our application to

class agent($working_dir, $config_opts) {
 require platform::sun-java
 require platform::endeavour-service

 File { owner => 0, group => 0, mode => 0644 }

 file { '/etc/motd':
 content => "Welcome to your Agent Node, managed by Puppet.\n"
 }

 platform::service::config {"service_configuration" :
 servicename => "agent",
 servicefilesource => "$working_dir/agent-1.0-SNAPSHOT.jar",
 servicefilename => "agent.jar",
 service_config_opts => $config_opts,
 require => Exec['install-java'];
 }
}

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

and we apply this to each environment we
deploy our application to

class agent($working_dir, $config_opts) {
 require platform::sun-java
 require platform::endeavour-service

 File { owner => 0, group => 0, mode => 0644 }

 file { '/etc/motd':
 content => "Welcome to your Agent Node, managed by Puppet.\n"
 }

 platform::service::config {"service_configuration" :
 servicename => "agent",
 servicefilesource => "$working_dir/agent-1.0-SNAPSHOT.jar",
 servicefilename => "agent.jar",
 service_config_opts => $config_opts,
 require => Exec['install-java'];
 }
}

compile and
unit test

acceptance
test

integration
test

UAT

performance
test

deploy to
production

and we abstract away the fact that
we are pushing to a local Data Centre

or to an IaaS platform like AWS

you may be using an IaaS provider to support testing and
integration but deploy into a local production environment

run locally on
build machine

build machine
in Data
Centre

integration
environment

(IaaS)

UAT
environment

(DC)

performance
environment

(IaaS)

Production
Environment

(DC)

you may be using an IaaS provider to support testing and
integration but deploy into a local production environment

run locally on
build machine

build machine
in Data
Centre

integration
environment

(IaaS)

UAT
environment

(DC)

performance
environment

(IaaS)

Production
Environment

(DC)

I’d like to use the
same tool to
deploy here

you may be using an IaaS provider to support testing and
integration but deploy into a local production environment

run locally on
build machine

build machine
in Data
Centre

integration
environment

(IaaS)

UAT
environment

(DC)

performance
environment

(IaaS)

Production
Environment

(DC)

I’d like to use the
same tool to
deploy here

here

you may be using an IaaS provider to support testing and
integration but deploy into a local production environment

run locally on
build machine

build machine
in Data
Centre

integration
environment

(IaaS)

UAT
environment

(DC)

performance
environment

(IaaS)

Production
Environment

(DC)

I’d like to use the
same tool to
deploy here

here

and here

and there is tooling available to do this too

and there is tooling available to do this too

@task
def deploy_environment(environment, build_number):
 target_env = ENVIRONMENTS[environment]
 deployment = Deployment(build_number,target_env)
 deployment.install(SERVICES)

@task
def end_to_end_test_against(environment, build_number):
 target_env = ENVIRONMENTS[environment]
 deployment = Deployment(build_number,target_env)
 deployment.run_end_to_end_tests(EndToEndTest())

and there is tooling available to do this too

@task
def deploy_environment(environment, build_number):
 target_env = ENVIRONMENTS[environment]
 deployment = Deployment(build_number,target_env)
 deployment.install(SERVICES)

@task
def end_to_end_test_against(environment, build_number):
 target_env = ENVIRONMENTS[environment]
 deployment = Deployment(build_number,target_env)
 deployment.run_end_to_end_tests(EndToEndTest())

this is a tool called Fabric

it’s a wrapper over SSH so you can run commands against anything you
have SSH access to

it’s a wrapper over SSH so you can run commands against anything you
have SSH access to

class RemoteServer(ApplicationServer):

 def deploy_service(self, target_env, service_name, artefact_repo):
 with settings(user='service', host_string=self.host, key_filename='~/.ssh/
deploy'):
 run('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
 run('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
 artefact_repo.build_number
)
 run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
 artefact_repo.build_number,
 service_name,
 artefact_repo.build_number,
 self.install_dir,
 target_env.property_file_name)
)

https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy

class RemoteServer(ApplicationServer):

 def deploy_service(self, target_env, service_name, artefact_repo):
 with settings(user='service', host_string=self.host, key_filename='~/.ssh/
deploy'):
 run('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
 run('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
 artefact_repo.build_number
)
 run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
 artefact_repo.build_number,
 service_name,
 artefact_repo.build_number,
 self.install_dir,
 target_env.property_file_name)
)

class LocalServer(ApplicationServer):

 def deploy_service(self, target_env, service_name, artefact_repo):
 local('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
 local('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
 artefact_repo.build_number
)
 local('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
 artefact_repo.build_number,
 service_name,
 artefact_repo.build_number,
 self.install_dir,
 target_env.property_file_name)
)

https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy

class RemoteServer(ApplicationServer):

 def deploy_service(self, target_env, service_name, artefact_repo):
 with settings(user='service', host_string=self.host, key_filename='~/.ssh/
deploy'):
 run('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
 run('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
 artefact_repo.build_number
)
 run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
 artefact_repo.build_number,
 service_name,
 artefact_repo.build_number,
 self.install_dir,
 target_env.property_file_name)
)

class LocalServer(ApplicationServer):

 def deploy_service(self, target_env, service_name, artefact_repo):
 local('rm -rf /tmp/deploy.%s' % artefact_repo.build_number)
 local('svn checkout /trunk/platform_deploy /tmp/deploy.%s' %
 artefact_repo.build_number
)
 local('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s' % (
 artefact_repo.build_number,
 service_name,
 artefact_repo.build_number,
 self.install_dir,
 target_env.property_file_name)
)

and yes, the astute among you will have noticed the awful duplication

https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy

run locally on
build machine

build machine
in Data
Centre

integration
environment

(IaaS)

UAT
environment

(DC)

performance
environment

(IaaS)

Production
Environment

(DC)

$ fab deploy_environment:integration,build-789

run locally on
build machine

build machine
in Data
Centre

integration
environment

(IaaS)

UAT
environment

(DC)

performance
environment

(IaaS)

Production
Environment

(DC)

so I can use
the same

command line
here

$ fab deploy_environment:integration,build-789

run locally on
build machine

build machine
in Data
Centre

integration
environment

(IaaS)

UAT
environment

(DC)

performance
environment

(IaaS)

Production
Environment

(DC)

so I can use
the same

command line
here

as the CD server
does to push here

$ fab deploy_environment:integration,build-789

run locally on
build machine

build machine
in Data
Centre

integration
environment

(IaaS)

UAT
environment

(DC)

performance
environment

(IaaS)

Production
Environment

(DC)

so I can use
the same

command line
here

as the CD server
does to push here

or here

$ fab deploy_environment:integration,build-789

declarative environment provisioning

prod:
 nodes:
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [hello_world]
 security_groups: [spicy-beef]
 availability_zone: us-east-1a
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [hello_world]
 security_groups: [spicy-beef]
 availability_zone: us-east-1b
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [apache]
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 security_groups: [spicy-beef]

 node_provider:
 class_name: AWSNodeProvider
 public_api_key: {{ aws_public_api_key }}
 private_api_key: {{ aws_private_api_key }}

declarative environment provisioning

prod:
 nodes:
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [hello_world]
 security_groups: [spicy-beef]
 availability_zone: us-east-1a
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [hello_world]
 security_groups: [spicy-beef]
 availability_zone: us-east-1b
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [apache]
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 security_groups: [spicy-beef]

 node_provider:
 class_name: AWSNodeProvider
 public_api_key: {{ aws_public_api_key }}
 private_api_key: {{ aws_private_api_key }}

apache:
 puppet_module_directory : puppet
 puppet_manifest : apache.pp
 service_configurator:
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
 connectivity:
 - protocol: tcp
 ports: [80]
 allowed: [WORLD]

hello_world:
 puppet_module_directory : puppet
 puppet_manifest : hello_world.pp
 service_configurator:
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
 connectivity:
 - protocol: tcp
 ports: [8080, 8081]
 allowed: [WORLD]

mongo:
 puppet_module_directory : puppet
 puppet_manifest : mongo.pp
 service_configurator:
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
 connectivity:
 - protocol: tcp
 ports: [27017]
 allowed: [hello_world]

declarative environment provisioning

prod:
 nodes:
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [hello_world]
 security_groups: [spicy-beef]
 availability_zone: us-east-1a
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [hello_world]
 security_groups: [spicy-beef]
 availability_zone: us-east-1b
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 - ami_id: ami-4dad7424
 size: t1.micro
 credentials_name: us-east-ssh
 aws_key_name : test
 services: [apache]
 type: phoenix.providers.aws_provider.AWSNodeDefinition
 security_groups: [spicy-beef]

 node_provider:
 class_name: AWSNodeProvider
 public_api_key: {{ aws_public_api_key }}
 private_api_key: {{ aws_private_api_key }}

apache:
 puppet_module_directory : puppet
 puppet_manifest : apache.pp
 service_configurator:
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
 connectivity:
 - protocol: tcp
 ports: [80]
 allowed: [WORLD]

hello_world:
 puppet_module_directory : puppet
 puppet_manifest : hello_world.pp
 service_configurator:
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
 connectivity:
 - protocol: tcp
 ports: [8080, 8081]
 allowed: [WORLD]

mongo:
 puppet_module_directory : puppet
 puppet_manifest : mongo.pp
 service_configurator:
phoenix.configurators.puppet_service_configurator.PuppetServiceConfigurator
 connectivity:
 - protocol: tcp
 ports: [27017]
 allowed: [hello_world]

OpsWorks

Checkmate

Deployment

the Fowler bomb

the Fowler bomb

“it pushes the accidental complexity into the infrastructure”

Martin Fowler

the Fowler bomb

“it pushes the accidental complexity into the infrastructure”

Martin Fowler

turns out that monitoring and logging have a big
part to play too

LB

/status

monitoring needs to be a first class concern

each of these should report metrics
at a well known location

LB

/status

monitoring needs to be a first class concern

each of these should report metrics
at a well known location

LB

/status these metrics can displayed locally

monitoring needs to be a first class concern

each of these should report metrics
at a well known location

LB

/status these metrics can displayed locally

and pushed to centralised monitoring
tools

monitoring needs to be a first class concern

each of these should report metrics
at a well known location

LB

/status these metrics can displayed locally

and pushed to centralised monitoring
tools

monitoring needs to be a first class concern

Status aware applications are the way forward

graphite for example

downstream systems and integration points should
be monitored by each service

LB

downstream systems and integration points should
be monitored by each service

LB

so action can be taken in the result of a
failure

downstream systems and integration points should
be monitored by each service

LB

so action can be taken in the result of a
failure

downstream systems and integration points should
be monitored by each service

LB

so action can be taken in the result of a
failure

for example, if a downstream service fails

LB

X

for example, if a downstream service fails

LB

X
GET /status

for example, if a downstream service fails

LB

HTTP/1.1 503 Service Unavailable

X
GET /status

for example, if a downstream service fails

LB

HTTP/1.1 503 Service Unavailable

X
GET /status

the application could block incoming requests, or notify operations

in java land there is a nice library from the good folks at
yammer that allows you to do a lot of this

http://metrics.codahale.com

import com.yammer.metrics.core.HealthCheck;

public class NamedHealthCheck extends HealthCheck {

 private final Pingable pingable;
 private final String name;

 public NamedHealthCheck(Pingable pingable, String name) {
 super(name);
 this.pingable = pingable;
 this.name = name;
 }

 @Override
 protected Result check() {
 try {
 return (pingable.ping())

? Result.healthy()
: Result.unhealthy(String.format("Could not connect to the %s", name));

 } catch (Exception e) {
 return Result.unhealthy(String.format("Could not connect to the %s", name));
 }

 }

}

http://metrics.codahale.com/getting-started/#getting-started
http://metrics.codahale.com/getting-started/#getting-started

then there are the groovy new (and some not so new)
tools on the block

then there are the groovy new (and some not so new)
tools on the block

• Graylog2
• Syslog-ng
• Logstash
• Scribe
• Splunk
• riemann

then there are the groovy new (and some not so new)
tools on the block

• Graylog2
• Syslog-ng
• Logstash
• Scribe
• Splunk
• riemann

and a final shout out to zipkin for distributed system monitoring

standing on the
shoulders of giants

Lions commentary on Unix 2nd edition

The Unix Philosophy

to build systems is to make trade-offs

to build systems is to make trade-offs

maintainability vs time-to-market

throughput vs cost

portability vs deployability

to build systems is to make trade-offs

maintainability vs time-to-market

throughput vs cost

portability vs deployability

infrastructure automation and tooling is
essential to get the benefits of this approach

thanks

jalewis@thoughtworks.com : @boicy : http://bovon.org

mailto:jalewis@thoughtworks.com
mailto:jalewis@thoughtworks.com
http://bovon.org
http://bovon.org

jalewis@thoughtworks.com : @boicy : http://bovon.org

is hiring

mailto:jalewis@thoughtworks.com
mailto:jalewis@thoughtworks.com
http://bovon.org
http://bovon.org

