BERLIN O1l0;

SOFTWARE DEVELOPMENT °°nf°r°“°e
CONFERENCE 2013

g

Training:0ct 15-1k / Conference Oct l? 18

managling micro-services

distributed systems and your infrastructure

jalewis@thoughtworks.com : @boicy : http://bovon.org

mailto:jalewis@thoughtworks.com
mailto:jalewis@thoughtworks.com
http://bovon.org
http://bovon.org

todays topics

recap on micro-services

some approaches to building them

some approaches to deploying them

Tcohnologk] Radar

Prepared by the ThoughtWorks Technology Advisory Board

OCTOBER 2012
thoughtworks.com/radar

the story so far

Analytics

n
+
| -
o
Q.
Q
o
n
kS,
)
o
n
| -
)
n
D)

L 3
)

.- -
-

- -
Db LT S, cenceas===""

L 3
)

.- -
-

- -
Db LT S, cenceas===""

Each capability decomposed into smaller applications based on your

functional and cross-functional requirements

<html>
<body>

</bo
</html

<div>
James
Lewis
</div>
<div id="links">
<a rel="self"
href="/users/ae3fc"
type="application/vnd. foobar.user+xml">Register User

<form id="update" method="POST" name="updateForm" action="/users/ae3fc">
<input id="updatedFirstName" type="text" name="firstName" value="James"/>
<input type="text" name="lastName" value="lewis"/>
<input type="submit" name="updateButton" wvalue="update"/>

</form>

<a rel="userIndex"
href="/users/index"
type="text/html">Search Users>
</div>
dy>
>

/user-request

L/ application/atom-json \
| /user-request/1223

Use standard application protocols to bridge
the semantic gap

TIME FLIES LIKE AN ARROW

.

TIME LORDS LIKE A TARDIS

P
o

The semwmankic gap characterises the difference between two

descriptions of an object by different linguistic representations, for
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap

http://en.wikipedia.org/wiki/Semantic_gap
http://en.wikipedia.org/wiki/Semantic_gap

rel="register”

TN
N N

The semwmankic gap characterises the difference between two

descriptions of an object by different linguistic representations, for
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap

http://en.wikipedia.org/wiki/Semantic_gap
http://en.wikipedia.org/wiki/Semantic_gap

rel="create”

rel="register”

TN
N N

The semwmankic gap characterises the difference between two

descriptions of an object by different linguistic representations, for
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap

http://en.wikipedia.org/wiki/Semantic_gap
http://en.wikipedia.org/wiki/Semantic_gap

-

~ . b b

RFC 5023 is an eXampIe

POST /users

POST /users

POST /users HTTP/1l.1
Host: example.org
User-Agent: Thingio/1.0
Authorization: Basic ZGFmZnk6c2VjZXJ1ldA==
Content-Type: application/atom+xml
Content-Length: nnn
Slug: First Post

<?xml version="1.0" 2>

<entry xmlns="http://www.w3.0rg/2005/Atom">
<title>James Lewis</title>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efaba</id>
<updated>2003-12-13T18:30:02Z</updated>
<author><name>James Lewis</name></author>
<content>stuff</content>

</entry>

/user-request

L/ application/atom-json \
| /user-request/1223

small, with a single responsibility

“objects should be no bigger than my head”

my conjecture

and while | have a giant head, its pretty empty so thats ok...

TN
o~
AL
D
~

as we chunk up domains, each domain should be small
enough to fit in my head

in this case, it meant 100’s of lines of code per application

ised around Product Lines!|

Product Teams organ

THE BUSINESS

developers

8888
8888

developers -

8888 | 28
8888 | o

Conway's Law

Conway's Law

“...organizations which design systems ... are constrained to produce designs
which are copies of the communication structure of those organizations”(sic)

Melvin Conway, 1968

Conway's Law

“...organizations which design systems ... are constrained to produce designs
which are copies of the communication structure of those organizations”(sic)

Melvin Conway, 1968

“If you ask seven people to write a compiler, you get a seven pass compiler”

Dan North, circa 2006

Thotgm

"p'.-;y_h' ‘

&
"v
»
=
-
=
~

fol,arl'}’ ¥

independently deployable and scalable

(
@>@<)
o

O—0—

independently scalable, deployable,

changeable, replaceable applications

whats the difference between
building, deploying and testing this:

whats the difference between
building, deploying and testing this:

and this?

~68% said yes ~ 32% said no

~80% are using automated provisioning

independently scalable, deployable,
changeable, replaceable applications

independently scalable, deployable,
changeable, replaceable applications

butlk, deg:i.a-ved and

scaled automatically

‘rvices

icro

ing m

d

bu

a basic build pipeline

a basic build pipeline

hey, itk works on
ny machine!

a basic build pipeline

ke:j, Ltk works on I GUESS ITS TIME
nmy machine! TO COMMIT AND
PUSH

a basic build pipeline

ke.:j, tk works on I GUESS ITS TIME
nmy moachine! TO COMMIT AND
PUSH

tompde and inkegration Pe‘.ﬂfarmamﬂe

unilk besk tesk ke sk

%

acceptance d@-f’wﬁ to
Fesk production

if you have lots of small applications all doing one thing

observing other resources, say

N
o~
L
e
~

PN
~_

if you have lots of small applications all doing one thing

observing other resources, say

N
o~
L
e
~

PN
~_

it is harder to put together a build pipeline for the components

Joining. leﬁplc appli(/aﬁoné

Application
Testing
Complete

Application A Integration
Testing

Application
Testing
Complete

Application B

Federated Fipel nes

Pre-release .
testing Production

L. or Froviolc
’ ‘ ' FaOl@éf’g for
Provider deployment by the

Consumer
¢a
Provider team covla contract tests congumer T

hoct tngtances for
testing. -

Consumer .
Production

Federated Pi {;6[; e

Pre-release _
testing Production

e Qe Q=D

Provider
Consumer

Provideyr FiPol'lV\@ Yung _Consumer
congumer tecte to engure the

veleace won't break. frlne/
consumer N Frodvohon

%

Consumer ¢ oncumer Teatt |
ubliches Test Production

¢er! {ﬂ'é to Y@FY@QGV\’I’
thelr m@;imman’ré

Artifact Repository

Acceptance
Test Publish

‘ V1234

Acceptance Acceptance Performance Consumer Driven
Test Publish Integration Test Tests Tests

Service 3

Service 2

Unit Acceptance
Test Test Publish

service 1

I Component build Acceptance Performance

) Tests Tests Publish
I Product build

PN Artifact Repository I

Integration with product Unit Acceptance Performance
version Test Tests Tests Publish

I (ntegration with consumers

Member

there is a little bit more in here...

: % .y/(//'doﬂ, %géy - %’I(l(«?& . %2(2‘0

CONTINUOUS
DELIVERY

JEz HUMBLE
DAVID FARLEY

Foreword by Martin Fowler

c
O
=

=

o
P’

-

(o)

)

S

-
o

W

-

[
=

7y

4°)

.
(a
=

autoscaling and status aware

ﬁomv YOU

CAN PREVENT GREY GOO

NEVER RELEASE NANOBOT ASSEMBLERS
WITHOUT REPLICATION LIMITING CODE

PRESS FIRE TO PLAY

we saw earlier the basic build pipeline

we saw earlier the basic build pipeline

ke.:j, tk works on I GUESS ITS TIME
nmy moachine! TO COMMIT AND
PUSH

c:ompde and inkegration Pe‘.ﬂfarm&hﬁe

unilk besk tesk ke sk

%

acaep&a&we depi.o Y to
esk production

which environments do you deploy into?

ke.:j, tk works own
ny machine!

tompde and inkegration Pe‘.ﬂfarmamﬂe

unilk besk tesk ke sk

%

acceptance depi.o y to
ke sk produ«c&ion

which environments do you deploy into?

ke.:j, tk works own
ny machine!

4)

run locally on
build machine

\- J

c:ompde and inkegration Pe‘.ﬂfarm&hﬁe

unilk besk tesk ke sk

%

acceptance d@-f”"" y to
ke sk produ«c&on

which environments do you deploy into?

ke.:j, tk works own
ny machine!

4)

run locally on
build machine

\- J

c:ompde and inkegration Pe‘.ﬂfarm&hﬁe

unilk besk tesk ke sk

%

acceptance d@-f”"" y to
ke sk produ«c&on

4)
deployed
locally on

build machine
\ J

which environments do you deploy into?

ke.:j, tk works own
ny machine!

4) 4)
deployed into
integration

environment
_ J _ J

run locally on
build machine

c:ompde and inkegration Pe‘.ﬂfarm&hﬁe

unilk besk tesk ke sk

%

acceptance d@-f”"" y to
ke sk produ«c&on

4)
deployed
locally on

build machine
\ J

which environments do you deploy into?

ke.:j, tk works own

ny machine!

-

run locally o
build machin

_

~N

n
S

J

t:ompite and

unilk besk

r

-

~N

deployed into

integration
environment

J

Ln&egra&mm

tesk

tesk

performance

%

aaaep&a&we

test

4)

. J

deployed
locally on

build machine

VAT

4)

deployed into
UAT

environment
_ J

deptoy ko
Produ&ion

which environments do you deploy into?

ke.:j, tk works own

ny machine!

4)

run locally on
build machine

\- J

4)

deployed into
integration
environment

. J

4)

deployed into
performance
environment

\- J

t:ompite and

unilk besk

Ln&egra&mm

tesk

tesk

performance

%

aaaep&a&we

test

r

-

N
deployed
locally on

build machine

J

VAT

r

deployed into
UAT
environment

-

~N

J

deptoy ko
Produ&ion

its often only when you start pushing out to bigger environments
that you start seeing problems

ke.:j, tk works own

ny machine!

-

) 4

~N

-

~N

run locally on
build machine

deployed into
integration
environment

deployed into
performance
environment

_

J .

t:ompite and

unilk besk

J

Ln&egra&mm

tesk

aaaep&a&we

test

r

-

N
deployed
locally on
build machine

J

VAT

_

J

r

deployed into
UAT
environment

-

~N

J

performance
test

%

deptoy ko

Produ&ion

its often only when you start pushing out to bigger environments
that you start seeing problems

hey, it works on

ny machine!

-

-

) 5

~

-

~N

run locally on
build machine

deployed into
integration
environment

deployed into
performance
environment

_

) -

compi{e 0

unil test

J

E«V\EQS rakion

ke sk

aaaep&amﬁe

ke sk

r

-

N
dePloyed
locally on
build machine

J

UAT

_

J

r

deployed into
UAT
environment

-

~N

J

Per{armm\t@.
ke sk

P

Proc{”’%ion

and if the lovely Mr Njgard taught us anything it was to test
with as realistic environments as early as possible

i |

Release It!

Design and Deploy
Production-Ready Software

_~

F

Michael T. Nygard

we can use virtualisation on our development
machines to bring up whole environments at once

we can use virtualisation on our development
machines to bring up whole environments at once

Vagrant

we can use virtualisation on our development
machines to bring up whole environments at once

Vagrant

IXC

vagrant looks a bit like
this:

vagrant looks a bit like
this:

$ vagrant box add base http://files.vagrantup.com/lucid32.box
S vagrant init
S vagrant up

vagrant looks a bit like
this:

$ vagrant box add base http://files.vagrantup.com/lucid32.box
S vagrant init
S vagrant up

tough eh? Even | can use it

vagrant looks a bit like
this:

$ vagrant box add base http://files.vagrantup.com/lucid32.box
S vagrant init
S vagrant up

tough eh? Even | can use it

under the hood, it applies a puppet manifest (or insert provisioning tool
file format)

http://vagrantup.com/v|/docs/getting-started/index.html

http://vagrantup.com/v1/docs/getting-started/index.html
http://vagrantup.com/v1/docs/getting-started/index.html

multiple VM's are pretty easy too

multiple VM's are pretty easy too

Vagrant::Config.run do |config
config.vm.define :web do |web config
web config.vm.box "web"
web config.vm.forward port 80, 8080
end

config.vm.define :db do |db config
db config.vm.box "db"
db config.vm.forward port 3306, 3306
end
end

multiple VM's are pretty easy too

Vagrant::Config.run do |config
config.vm.define :web do |web config
web config.vm.box "web
web config.vm.forward port 80, 8080
end

config.vm.define :db do |db config
db config.vm.box "db"
db config.vm.forward port 3306, 3306
end
end

it will take care of the networking business for you

http://vagrantup.com/v|/docs/getting-started/index.html

http://vagrantup.com/v1/docs/getting-started/index.html
http://vagrantup.com/v1/docs/getting-started/index.html

so now we can deploy our app locally to
multiple VM's to test before pushing

~

so now we can deploy our app locally to
multiple VM's to test before pushing

~N

J C

hey, it really does
woTk o mv
machine!

so now we can deploy our app locally to
multiple VM's to test before pushing

~N

_

hey, it really does
woTk o mv
machine!

which is a bit of a win in my book

we specify the dependencies for our
application declaratively

~

we specify the dependencies for our
application declaratively

~N

class agent($working dir, S$config opts) {
require platform::sun-java
require platform::endeavour-service

File { owner => 0, group => 0, mode => 0644 }

file { '/etc/motd':
content => "Welcome to your Agent Node, managed by Puppet.\n"

}

platform::service::config {"service configuration"
servicename => "agent",
servicefilesource => "$working dir/agent-1.0-SNAPSHOT.jar",
servicefilename => "agent.jar",
service config opts => $config opts,
require => Exec|['install-java'];

and we apply this to each environment we
deploy our application to

~N

class agent($working dir, S$config opts) {
require platform::sun-java
require platform::endeavour-service

File { owner => 0, group => 0, mode => 0644 }

file { '/etc/motd':
content => "Welcome to your Agent Node, managed by Puppet.\n"

}

platform::service::config {"service configuration" :
servicename => "agent",
servicefilesource => "$working dir/agent-1.0-SNAPSHOT.jar",
servicefilename => "agent.jar",
service config opts => $config opts,
require => Exec|['install-java'];

and we apply this to each environment we
deploy our application to

~

_

and we apply this to each environment we
deploy our application to

~N

_

c:ompde and inkegration Pe‘.ﬂfarm&hﬁe

unilk besk tesk ke sk

%

acceptance d@-f”-"'j to
Fesk production

and we apply this to each environment we
deploy our application to

~N

_

c:ompde and inkegration Pe‘.ﬂfarm&hﬁe

unilk besk tesk ke sk

%

acaep&a&we dﬁf’w? to
Fesk production

and we abskract away the fact that

we are pushing to a local Data Centre
or to an laaS platform like AWS

you may be using an laaS provider to support testing and
integration but deploy into a local production environment

-

_

run locally on
build machine

) 4

J .

integration
environment

(laaS)

~N

J

4)

build machine
in Data
Centre

-

performance
environment

(laaS)
.

~N

J

r

_

UAT

environment

(DC)

~N

J

r

_

Production
Environment

(DC)

~N

J

you may be using an laaS provider to support testing and
integration but deploy into a local production environment

Id Like ko use the
same tool bto

ci@.pta-j here

-

_

run locally on
build machine

) 4

J .

integration
environment

(laaS)

~N

J

4)

build machine
in Data
Centre

-

performance
environment

(laaS)
.

~N

J

r

_

UAT

environment

(DC)

~N

J

r

_

Production
Environment

(DC)

~N

J

you may be using an laaS provider to support testing and
integration but deploy into a local production environment

Id Like ko use the
same tool bto

ci@.pta-j here

-

_

run locally on
build machine

here

) 4

J .

integration
environment

(laaS)

~N

J

4)

build machine
in Data
Centre

-

performance
environment

(laaS)
.

~N

J

r

_

UAT

environment

(DC)

~N

J

r

_

Production
Environment

(DC)

~N

J

you may be using an laaS provider to support testing and
integration but deploy into a local production environment

Id Like ko use the
same tool bto

ci@.pta-j here

-

_

run locally on
build machine

here

) 4

J .

integration
environment

(laaS)

~N

J

4)

build machine
in Data
Centre

-

performance
environment

(laaS)
.

~N

J

r

_

UAT

environment

(DC)

~N

J

and here

r

_

Production
Environment

(DC)

~N

J

and there is tooling available to do this too

and there is tooling available to do this too

@Qtask

def deploy environment (environment, build number):
target env = ENVIRONMENTS[environment]
deployment = Deployment(build number,target env)
deployment.install (SERVICES)

@task

def end to end test against(environment, build number):
target env = ENVIRONMENTS[environment]
deployment = Deployment(build number,target env)
deployment.run end to end tests(EndToEndTest())

and there is tooling available to do this too

@Qtask

def deploy environment (environment, build number):
target env = ENVIRONMENTS[environment]
deployment = Deployment(build number,target env)
deployment.install (SERVICES)

@task

def end to end test against(environment, build number):
target env = ENVIRONMENTS[environment]
deployment = Deployment(build number,target env)
deployment.run end to end tests(EndToEndTest())

this is a tool called Fabric

it's a wrapper over SSH so you can run commands against anything you
have SSH access to

it's a wrapper over SSH so you can run commands against anything you
have SSH access to

class RemoteServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):
with settings(user='service', host string=self.host, key filename='~/.ssh/

deploy'):
run('rm -rf /tmp/deploy.%$s' % artefact repo.build number)

[e)

run('svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s
artefact repo.build number,
service name,
artefact repo.build number,
self.install dir,
target env.property file name)

https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy

class LocalServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):
local('rm -rf /tmp/deploy.%s' % artefact repo.build number)
local('svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

local('/tmp/deploy.%s/deploy-no-db.sh %s $%s
artefact repo.build number,
service_ name,
artefact repo.build number,
self.install dir,
target env.property file name)

class RemoteServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):

with settings(user='service', host string=self.host, key filename='~/.ssh/
deploy'):

run('rm -rf /tmp/deploy.%$s' % artefact repo.build number)
run('svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s
artefact repo.build number,
service name,
artefact repo.build number,
self.install dir,
target env.property file name)

https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy

and yes, the astute among you will have noticed the awful duplication

class LocalServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):
local('rm -rf /tmp/deploy.%s' % artefact repo.build number)
local('svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

local('/tmp/deploy.%s/deploy-no-db.sh %
artefact repo.build number,
service_ name,
artefact repo.build number,
self.install dir,
target env.property file name)

class RemoteServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):

with settings(user='service', host string=self.host, key filename='~/.ssh/
deploy'):
run('rm -rf /tmp/deploy.%$s' % artefact repo.build number)
run('svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s
artefact repo.build number,
service name,
artefact repo.build number,
self.install dir,
target env.property file name)

https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy

4)

run locally on
build machine

_ J

r

_

integration

environment

(laaS)

~N

J

r

in Data
Centre

~N

build machine

-

performance
environment

(laaS)

_

~N

J

r

_

UAT
environment

(DC)

~N

J

$ fab deploy environment:integration,build-789

r

_

Production
Environment

(DC)

~N

J

$ fab deploy environment:integration,build-789

so I caln use
the same
command Line
here

4)

run locally on
build machine

_ J

r

_

integration
environment

(laaS)

~N

J

r

in Data
Centre

~N

build machine

-

performance
environment

(laaS)
.

~N

J

r

_

UAT

environment

(DC)

~N

J

r

_

Production
Environment

(DC)

~N

J

$ fab deploy environment:integration,build-789

so I caln use
the same
command Line
here

4)

run locally on
build machine

_ J

as the CD server
does ko Fu,sk here

r

_

integration

environment

(laaS)

) 4

J _

r

~N

build machine

in Data
Centre

performance
environment

(laaS)

~N

J

r

_

~N

UAT
environment

(DC)

J

r

_

Production
Environment

(DC)

~N

J

$ fab deploy environment:integration,build-789

so I caln use
the same
command Line
here

4)

run locally on
build machine

_ J

as the CD server
does ko Fu,sk here

r

_

integration

environment

(laaS)

) 4

J _

r

in Data
Centre

~N

build machine

performance
environment

(laaS)

~N

J

r

_

~N

UAT
environment

(DC)

J

or here

r

_

Production
Environment

(DC)

~N

J

declarative environment provisioning

prod:

nodes:

- ami_id: ami-4dad7424
size: tl.micro
credentials name: us-east-ssh
aws key name : test
services: [hello_world]
security groups: [spicy-beef]
availability zone: us-east-la
type: phoenix.providers.aws provider.AWSNodeDefinition
ami id: ami-4dad7424
size: tl.micro
credentials name: us-east-ssh
aws key name : test
services: [hello world]
security groups: [spicy-beef]
availability zone: us-east-1b
type: phoenix.providers.aws provider.AWSNodeDefinition
ami id: ami-4dad7424
size: tl.micro
credentials name: us-east-ssh
aws_key name : test
services: [apache]
type: phoenix.providers.aws provider.AWSNodeDefinition
security groups: [spicy-beef]

node_provider:
class _name: AWSNodeProvider
public api key: {{ aws public api key }}
private api key: {{ aws_ private api key }}

declarative environment provisioning

apache:
puppet module directory : puppet
puppet manifest : apache.pp
service configurator:
phoenix.configurators.puppet service configurator.PuppetServiceConfigurator
connectivity:
- protocol: tcp
ports: [80]
allowed: [WORLD]

hello_world:
puppet module directory : puppet
puppet manifest : hello world.pp
service configurator:
phoenix.configurators.puppet service configurator.PuppetServiceConfigurator
connectivity:
- protocol: tcp
ports: [8080, 8081]
allowed: [WORLD]

mongo:
puppet module directory : puppet
puppet manifest : mongo.pp
service configurator:
phoenix.configurators.puppet service configurator.PuppetServiceConfigurator
connectivity:
- protocol: tcp
ports: [27017]
allowed: [hello world]

declarative environment provisioning

OpsWorks|

- |\Checkmate

Deployment

-

N s*

—
—

the Fowler bomb

the Fowler bomb

“it pushes the accidental complexity into the infrastructure”

Martin Fowler

the Fowler bomb

“it pushes the accidental complexity into the infrastructure”

Martin Fowler

turns out that monitoring and logging have a big
part to play too

monitoring needs to be a first class concern

monitoring needs to be a first class concern

~each of these should report metrics
J ~ ata well known location

/status

monitoring needs to be a first class concern

~each of these should report metrics
J ~ ata well known location

/status these metrics can displayed locally

monitoring needs to be a first class concern

each of these should report metrics
at a well known location

/status these metrics can displayed locally

and pushed to centralised monitoring
tools

monitoring needs to be a first class concern

each of these should report metrics
at a well known location

/status these metrics can displayed locally

and pushed to centralised monitoring
tools

Status aware applications are the way forward

graphite for example

Cosmnand-Line Latarface

Logged 1n as cdavis, logoy

graphite ==

Tree Search Auto Completer
7 mom -

Graphite Pracessing Theoughput

-} Graphate
PROQ
] Perf
afe
] ar
carban
~
~ apants
-1 grphOing
1 e
avgUpdataTine
cache
cammittedPotnts
creates
errers
potntsPerUpdate
updateCparatians
= grphiGwip
‘.
avgUpdataTine
(e

.
Queries
uroe
=T
cammitisdPoints
STeAtes
arrers
potnssFerUpdate
updateCparations
o pypedUnlisatson
© Fypem
+ databuze
4 Boating
+ =
+ ods
=} My Graphs
wyTest
Graph Title

tenilld
Y Axis Label

o] User Grapln

Camvas Colars b foegreurd el » B EREEREREDR

orash sptiens backgrowndcalr » HEEEEEE N
EaEEn

x B8 B

canvas * largetz & wpdate every 1 men

downstream systems and integration points should
be monitored by each service

downstream systems and integration points should
be monitored by each service

sO action can be taken in the result of a
failure

downstream systems and integration points should
be monitored by each service

so action can be taken in the result of a
failure

downstream systems and integration points should
be monitored by each service

so action can be taken in the result of a
failure

for example, if a downstream service fails

for example, if a downstream service fails

for example, if a downstream service fails

GET /status

HTTP/1.1 503 Service Unavailable

for example, if a downstream service fails

GET /status

HTTP/1.1 503 Service Unavailable

the application could block incoming requests, or notify operations

in java land there is a nice library from the good folks at
yammer that allows you to do a lot of this

import com.yammer.metrics.core.HealthCheck;
public class NamedHealthCheck extends HealthCheck {

private final Pingable pingable;
private final String name;

public NamedHealthCheck(Pingable pingable, String name) {
super (name) ;
this.pingable = pingable;
this.name = name;

}

@Override
protected Result check() {
try {
return (pingable.ping())
? Result.healthy()

¢ Result.unhealthy(String.format("Could not connect to the %s", name));
} catch (Exception e) {

return Result.unhealthy(String.format("Could not connect to the %s", name));

}

}

http://metrics.codahale.com

http://metrics.codahale.com/getting-started/#getting-started
http://metrics.codahale.com/getting-started/#getting-started

then there are the groovy new (and some not so new)
tools on the block

then there are the groovy new (and some not so new)
tools on the block

Graylog2

Syslog-ng
Logstash
Scribe
Splunk

riemann

then there are the groovy new (and some not so new)
tools on the block

Graylog2
Syslog-ng
Logstash
Scribe
Splunk
riemann

and a final shout out to zipkin for distributed system monitoring

e o
——
{" standing on the
shoulders of giants

v
- /// - -%//Jw //r.}/y . /!:’//IIII/II to . v/ teed

AN [w
o I{‘/

>
<A =
<"\ o

\"
e N
%] A

CONTINUOUS

Release It! DELIVERY

Design and Deploy
Production-Ready Software

Jez HUMBLE S

DAVID FARLEY

Foreword by Martin Fowler
Michael T,]

REST in Practice

Foreword by Martin Fowler

but "invented a slightly better one. That finally got changed once more to what we have
today. He put pipes into Unix." Thompson also had to change most of the programs,
because up until that time, they couldn't take standard input. There wasn't really a need;
they all had file arguments. "GREP had a file argument, CAT had a file argument."

The next morning, "we had this orgy of “one liners." Everybody had a one liner.
Look at this, look at that. ...Everybody started putting forth the UNIX philosophy. Write
programs that do one thing and do 1t well. Write programs to work together. Write
programs that handle text streams, because that 1s a universal interface." Those 1deas
which add up to the tool approach, were there in some unformed way before pipes, but
they really came together afterwards. Pipes became the catalyst for this UNIX
philosophy. "The tool thing has turned out to be actually successful. With pipes, many
programs could work together, and they could work together at a distance."

The Unix Philosophy

Lions commentary on Unix 2nd edition

to build systems is to make trade-offs

to build systems is to make trade-offs

maintainability vs time-to-market
throughput vs cost

portability vs deployability

to build systems is to make trade-offs

maintainability vs time-to-market
throughput vs cost
portability vs deployability

infrastructure automation and tooling is
essential to get the benefits of this approach

BERLIN - goto;
SOFTWARE DEVELOPMENT 00ﬂf9l'9ﬂ03
CONFERENCE 2013 e — =~

Training:0ct 15-1k / Conference:0ct 17-18

thanks

jalewis@thoughtworks.com : @boicy : http://bovon.org

mailto:jalewis@thoughtworks.com
mailto:jalewis@thoughtworks.com
http://bovon.org
http://bovon.org

Thought\Works'

mailto:jalewis@thoughtworks.com
mailto:jalewis@thoughtworks.com
http://bovon.org
http://bovon.org

