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the story so far
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Each capability decomposed into smaller applications based on your

functional and cross-functional requirements













<html>
<body>

</bo
</html

<div>
<span id="firstName">James</span>
<span id="lastName">Lewis</span>
</div>
<div id="links">
<a rel="self"
href="/users/ae3fc"
type="application/vnd. foobar.user+xml">Register User</a>

<form id="update" method="POST" name="updateForm" action="/users/ae3fc">
<input id="updatedFirstName" type="text" name="firstName" value="James"/>
<input type="text" name="lastName" value="lewis"/>
<input type="submit" name="updateButton" wvalue="update"/>

</form>

<a rel="userIndex"
href="/users/index"
type="text/html">Search Users</a>>
</div>
dy>
>







/user-request
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Use standard application protocols to bridge
the semantic gap

TIME FLIES LIKE AN ARROW

.

TIME LORDS LIKE A TARDIS
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The semwmankic gap characterises the difference between two

descriptions of an object by different linguistic representations, for
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap
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The semwmankic gap characterises the difference between two

descriptions of an object by different linguistic representations, for
instance languages or symbols.

http://en.wikipedia.org/wiki/Semantic_gap
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POST /users

POST /users

POST /users HTTP/1l.1
Host: example.org
User-Agent: Thingio/1.0
Authorization: Basic ZGFmZnk6c2VjZXJ1ldA==
Content-Type: application/atom+xml
Content-Length: nnn
Slug: First Post

<?xml version="1.0" 2>

<entry xmlns="http://www.w3.0rg/2005/Atom">
<title>James Lewis</title>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efaba</id>
<updated>2003-12-13T18:30:02Z</updated>
<author><name>James Lewis</name></author>
<content>stuff</content>

</entry>




/user-request

L/ application/atom-json \
| /user-request/1223




small, with a single responsibility













“objects should be no bigger than my head”

my conjecture




and while | have a giant head, its pretty empty so thats ok...
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as we chunk up domains, each domain should be small
enough to fit in my head




in this case, it meant 100’s of lines of code per application
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Conway's Law



Conway's Law

“...organizations which design systems ... are constrained to produce designs
which are copies of the communication structure of those organizations”(sic)

Melvin Conway, 1968




Conway's Law

“...organizations which design systems ... are constrained to produce designs
which are copies of the communication structure of those organizations”(sic)

Melvin Conway, 1968

“If you ask seven people to write a compiler, you get a seven pass compiler”

Dan North, circa 2006
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independently deployable and scalable
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independently scalable, deployable,

changeable, replaceable applications







whats the difference between
building, deploying and testing this:




whats the difference between
building, deploying and testing this:

and this?







~68% said yes ~ 32% said no




~80% are using automated provisioning
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a basic build pipeline
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hey, itk works on
ny machine!




a basic build pipeline

ke:j, Ltk works on I GUESS ITS TIME
nmy machine! TO COMMIT AND
PUSH




a basic build pipeline

ke.:j, tk works on I GUESS ITS TIME
nmy moachine! TO COMMIT AND
PUSH

tompde and inkegration Pe‘.ﬂfarmamﬂe

unilk besk tesk ke sk

%

acceptance d@-f’wﬁ to
Fesk production




if you have lots of small applications all doing one thing

observing other resources, say
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if you have lots of small applications all doing one thing
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it is harder to put together a build pipeline for the components
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Artifact Repository

Acceptance
Test Publish

‘ V1234

Acceptance Acceptance Performance Consumer Driven
Test  Publish Integration Test Tests Tests

Service 3

Service 2

Unit Acceptance
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there is a little bit more in here...
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JEz HUMBLE
DAVID FARLEY

Foreword by Martin Fowler
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autoscaling and status aware

ﬁomv YOU

CAN PREVENT GREY GOO

NEVER RELEASE NANOBOT ASSEMBLERS
WITHOUT REPLICATION LIMITING CODE




PRESS FIRE TO PLAY



we saw earlier the basic build pipeline
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which environments do you deploy into?
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its often only when you start pushing out to bigger environments
that you start seeing problems
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its often only when you start pushing out to bigger environments
that you start seeing problems
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and if the lovely Mr Njgard taught us anything it was to test
with as realistic environments as early as possible

i |

Release It!

Design and Deploy
Production-Ready Software

_~

F

Michael T. Nygard




we can use virtualisation on our development
machines to bring up whole environments at once
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Vagrant




we can use virtualisation on our development
machines to bring up whole environments at once

Vagrant
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vagrant looks a bit like
this:
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$ vagrant box add base http://files.vagrantup.com/lucid32.box
S vagrant init
S vagrant up
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vagrant looks a bit like
this:

$ vagrant box add base http://files.vagrantup.com/lucid32.box
S vagrant init
S vagrant up

tough eh? Even | can use it

under the hood, it applies a puppet manifest (or insert provisioning tool
file format)

http://vagrantup.com/v|/docs/getting-started/index.html
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multiple VM's are pretty easy too




multiple VM's are pretty easy too

Vagrant::Config.run do |config
config.vm.define :web do |web config
web config.vm.box "web"
web config.vm.forward port 80, 8080
end

config.vm.define :db do |db config
db config.vm.box "db"
db config.vm.forward port 3306, 3306
end
end




multiple VM's are pretty easy too

Vagrant::Config.run do |config
config.vm.define :web do |web config
web config.vm.box "web
web config.vm.forward port 80, 8080
end

config.vm.define :db do |db config
db config.vm.box "db"
db config.vm.forward port 3306, 3306
end
end

it will take care of the networking business for you

http://vagrantup.com/v|/docs/getting-started/index.html
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so now we can deploy our app locally to
multiple VM's to test before pushing
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hey, it really does
woTk o mv
machine!

which is a bit of a win in my book
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we specify the dependencies for our
application declaratively
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class agent( $working dir, S$config opts ) {
require platform::sun-java
require platform::endeavour-service

File { owner => 0, group => 0, mode => 0644 }

file { '/etc/motd':
content => "Welcome to your Agent Node, managed by Puppet.\n"

}

platform::service::config {"service configuration"
servicename => "agent",
servicefilesource => "$working dir/agent-1.0-SNAPSHOT.jar",
servicefilename => "agent.jar",
service config opts => $config opts,
require => Exec|[ 'install-java'];




and we apply this to each environment we
deploy our application to
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class agent( $working dir, S$config opts ) {
require platform::sun-java
require platform::endeavour-service

File { owner => 0, group => 0, mode => 0644 }

file { '/etc/motd':
content => "Welcome to your Agent Node, managed by Puppet.\n"

}

platform::service::config {"service configuration" :
servicename => "agent",
servicefilesource => "$working dir/agent-1.0-SNAPSHOT.jar",
servicefilename => "agent.jar",
service config opts => $config opts,
require => Exec|[ 'install-java'];
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and we abskract away the fact that

we are pushing to a local Data Centre
or to an laaS platform like AWS




you may be using an laaS provider to support testing and
integration but deploy into a local production environment
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and there is tooling available to do this too




and there is tooling available to do this too

@Qtask

def deploy environment (environment, build number):
target env = ENVIRONMENTS[environment]
deployment = Deployment(build number,target env)
deployment.install (SERVICES)

@task

def end to end test against(environment, build number):
target env = ENVIRONMENTS[environment]
deployment = Deployment(build number,target env)
deployment.run end to end tests(EndToEndTest())




and there is tooling available to do this too

@Qtask

def deploy environment (environment, build number):
target env = ENVIRONMENTS[environment]
deployment = Deployment(build number,target env)
deployment.install (SERVICES)

@task

def end to end test against(environment, build number):
target env = ENVIRONMENTS[environment]
deployment = Deployment(build number,target env)
deployment.run end to end tests(EndToEndTest())

this is a tool called Fabric




it's a wrapper over SSH so you can run commands against anything you
have SSH access to




it's a wrapper over SSH so you can run commands against anything you
have SSH access to

class RemoteServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):
with settings(user='service', host string=self.host, key filename='~/.ssh/

deploy'):
run('rm -rf /tmp/deploy.%$s' % artefact repo.build number)

[e)

run( 'svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s
artefact repo.build number,
service name,
artefact repo.build number,
self.install dir,
target env.property file name)



https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy

class LocalServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):
local('rm -rf /tmp/deploy.%s' % artefact repo.build number)
local( 'svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

local('/tmp/deploy.%s/deploy-no-db.sh %s $%s
artefact repo.build number,
service_ name,
artefact repo.build number,
self.install dir,
target env.property file name)

class RemoteServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):

with settings(user='service', host string=self.host, key filename='~/.ssh/
deploy'):

run('rm -rf /tmp/deploy.%$s' % artefact repo.build number)
run( 'svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s
artefact repo.build number,
service name,
artefact repo.build number,
self.install dir,
target env.property file name)



https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
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and yes, the astute among you will have noticed the awful duplication

class LocalServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):
local('rm -rf /tmp/deploy.%s' % artefact repo.build number)
local( 'svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

local('/tmp/deploy.%s/deploy-no-db.sh %
artefact repo.build number,
service_ name,
artefact repo.build number,
self.install dir,
target env.property file name)

class RemoteServer (ApplicationServer):

def deploy service(self, target env, service name, artefact repo):

with settings(user='service', host string=self.host, key filename='~/.ssh/
deploy'):
run('rm -rf /tmp/deploy.%$s' % artefact repo.build number)
run( 'svn checkout /trunk/platform deploy /tmp/deploy.%s' %
artefact repo.build number

)

run('/tmp/deploy.%s/deploy-no-db.sh %s %s %s %s
artefact repo.build number,
service name,
artefact repo.build number,
self.install dir,
target env.property file name)



https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
https://collaborate.bt.com/svn/ape-project/trunk/platform_deploy
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declarative environment provisioning

prod:

nodes:

- ami_id: ami-4dad7424
size: tl.micro
credentials name: us-east-ssh
aws key name : test
services: [hello_world]
security groups: [ spicy-beef ]
availability zone: us-east-la
type: phoenix.providers.aws provider.AWSNodeDefinition
ami id: ami-4dad7424
size: tl.micro
credentials name: us-east-ssh
aws key name : test
services: [hello world]
security groups: [ spicy-beef ]
availability zone: us-east-1b
type: phoenix.providers.aws provider.AWSNodeDefinition
ami id: ami-4dad7424
size: tl.micro
credentials name: us-east-ssh
aws_key name : test
services: [apache]
type: phoenix.providers.aws provider.AWSNodeDefinition
security groups: [ spicy-beef ]

node_provider:
class _name: AWSNodeProvider
public api key: {{ aws public api key }}
private api key: {{ aws_ private api key }}




declarative environment provisioning

apache:
puppet module directory : puppet
puppet manifest : apache.pp
service configurator:
phoenix.configurators.puppet service configurator.PuppetServiceConfigurator
connectivity:
- protocol: tcp
ports: [ 80 ]
allowed: [ WORLD ]

hello_world:
puppet module directory : puppet
puppet manifest : hello world.pp
service configurator:
phoenix.configurators.puppet service configurator.PuppetServiceConfigurator
connectivity:
- protocol: tcp
ports: [ 8080, 8081 ]
allowed: [ WORLD ]

mongo:
puppet module directory : puppet
puppet manifest : mongo.pp
service configurator:
phoenix.configurators.puppet service configurator.PuppetServiceConfigurator
connectivity:
- protocol: tcp
ports: [ 27017 ]
allowed: [ hello world ]




declarative environment provisioning
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the Fowler bomb

“it pushes the accidental complexity into the infrastructure”

Martin Fowler

turns out that monitoring and logging have a big
part to play too
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monitoring needs to be a first class concern

each of these should report metrics
at a well known location

/status these metrics can displayed locally

and pushed to centralised monitoring
tools

Status aware applications are the way forward
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for example, if a downstream service fails

GET /status

HTTP/1.1 503 Service Unavailable

the application could block incoming requests, or notify operations




in java land there is a nice library from the good folks at
yammer that allows you to do a lot of this

import com.yammer.metrics.core.HealthCheck;
public class NamedHealthCheck extends HealthCheck {

private final Pingable pingable;
private final String name;

public NamedHealthCheck(Pingable pingable, String name) {
super (name) ;
this.pingable = pingable;
this.name = name;

}

@Override
protected Result check() {
try {
return (pingable.ping())
? Result.healthy()

¢ Result.unhealthy(String.format("Could not connect to the %s", name));
} catch (Exception e) {

return Result.unhealthy(String.format("Could not connect to the %s", name));

}

}

http://metrics.codahale.com
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then there are the groovy new (and some not so new)
tools on the block

Graylog2
Syslog-ng
Logstash
Scribe
Splunk
riemann

and a final shout out to zipkin for distributed system monitoring
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but "invented a slightly better one. That finally got changed once more to what we have
today. He put pipes into Unix." Thompson also had to change most of the programs,
because up until that time, they couldn't take standard input. There wasn't really a need;
they all had file arguments. "GREP had a file argument, CAT had a file argument."

The next morning, "we had this orgy of “one liners." Everybody had a one liner.
Look at this, look at that. ...Everybody started putting forth the UNIX philosophy. Write
programs that do one thing and do 1t well. Write programs to work together. Write
programs that handle text streams, because that 1s a universal interface." Those 1deas
which add up to the tool approach, were there in some unformed way before pipes, but
they really came together afterwards. Pipes became the catalyst for this UNIX
philosophy. "The tool thing has turned out to be actually successful. With pipes, many
programs could work together, and they could work together at a distance."

The Unix Philosophy

Lions commentary on Unix 2nd edition
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to build systems is to make trade-offs

maintainability vs time-to-market
throughput vs cost
portability vs deployability

infrastructure automation and tooling is
essential to get the benefits of this approach
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