
Failure Comes in Flavors
Stability Patterns and Antipatterns

© Michael Nygard, 2007-2012 1

Michael Nygard
mtnygard@thinkrelevance.com

@mtnygard

Friday, May 25, 12

mailto:mtnygard@thinkrelevance.com
mailto:mtnygard@thinkrelevance.com
mailto:mtnygard@thinkrelevance.com
mailto:mtnygard@thinkrelevance.com

Stability Antipatterns

2
Friday, May 25, 12

Integration Points

Integrations are the #1 risk to stability.

Your first job is to protect
against integration points.
Every socket, process, pipe,
or remote procedure call
can and will eventually
kill your system.
Even database calls can
hang, in obvious and
not-so-obvious ways.

Friday, May 25, 12

Example: Wicked database
hang

Friday, May 25, 12

Example: Wicked database
hang

Not at all obvious: Firewall idle connection timeout
“Connection” is an abstraction.

The firewall only sees packets.

It keeps a table of “live” connections.

When the firewall sees a TCP teardown sequence, it
removes that connection from the table.

To avoid resource leaks, it will drop entries from table after idle period timeout.

Friday, May 25, 12

Example: Wicked database
hang

Not at all obvious: Firewall idle connection timeout
“Connection” is an abstraction.

The firewall only sees packets.

It keeps a table of “live” connections.

When the firewall sees a TCP teardown sequence, it
removes that connection from the table.

To avoid resource leaks, it will drop entries from table after idle period timeout.

Causes broken database connections after long idle period, like 2 a.m. to 5 a.m.

Friday, May 25, 12

Example: Wicked database
hang

Not at all obvious: Firewall idle connection timeout
“Connection” is an abstraction.

The firewall only sees packets.

It keeps a table of “live” connections.

When the firewall sees a TCP teardown sequence, it
removes that connection from the table.

To avoid resource leaks, it will drop entries from table after idle period timeout.

Causes broken database connections after long idle period, like 2 a.m. to 5 a.m.

Simple solution: Enable “dead connection detection” (Oracle) or similar
feature to keep connection alive.

Friday, May 25, 12

Example: Wicked database
hang

Not at all obvious: Firewall idle connection timeout
“Connection” is an abstraction.

The firewall only sees packets.

It keeps a table of “live” connections.

When the firewall sees a TCP teardown sequence, it
removes that connection from the table.

To avoid resource leaks, it will drop entries from table after idle period timeout.

Causes broken database connections after long idle period, like 2 a.m. to 5 a.m.

Simple solution: Enable “dead connection detection” (Oracle) or similar
feature to keep connection alive.
Alternative solution: timed job to periodically issue trivial query.

Friday, May 25, 12

Example: Wicked database
hang

Not at all obvious: Firewall idle connection timeout
“Connection” is an abstraction.

The firewall only sees packets.

It keeps a table of “live” connections.

When the firewall sees a TCP teardown sequence, it
removes that connection from the table.

To avoid resource leaks, it will drop entries from table after idle period timeout.

Causes broken database connections after long idle period, like 2 a.m. to 5 a.m.

Simple solution: Enable “dead connection detection” (Oracle) or similar
feature to keep connection alive.
Alternative solution: timed job to periodically issue trivial query.

What about prevention?

Friday, May 25, 12

“In Spec” vs. “Out of Spec”

“In Spec” failures
TCP connection refused
HTTP response code 500
Error message in XML
response

Example: Request-Reply using XML over HTTP

Well-Behaved Errors Wicked Errors

“Out of Spec” failures

TCP connection accepted, but no data
sent

TCP window full, never cleared

Server never ACKs TCP, causing very
long delays as client retransmits

Connection made, server replies with
SMTP hello string

Server sends HTML “link-farm” page

Server sends one byte per second

Server sends Weird Al catalog in MP3

Friday, May 25, 12

Remember This

Beware this necessary evil.

Prepare for the many forms of failure.

Know when to open up abstractions.

Failures propagate quickly.

Large systems fail faster than small ones.

Apply “Circuit Breaker”, “Use Timeouts”, “Use
Decoupling Middleware”, and “Handshaking” to contain
and isolate failures.

Use “Test Harness” to find problems in development.

Friday, May 25, 12

Chain Reaction

Example:
Suppose S4 goes down

S1 - S3 go from 25% of total
to 33% of total

That’s 33% more load

Each one dies faster
Failure moves horizontally
across tier
Common in search engines
and application servers

Failure in one component raises probability of failure in its peers

Friday, May 25, 12

Remember This

One server down jeopardizes the rest.
Hunt for Resource Leaks.
Defend with “Bulkheads”.

Friday, May 25, 12

Failure moves vertically
across tiers

Common in enterprise
services and SOAs

Failure in one system causes calling systems to be jeopardized

Example:
System S goes down, causing
calling system A to get slow or go
down.

Cascading Failure

Friday, May 25, 12

Remember This

Prevent Cascading Failure to stop cracks
from jumping the gap.
Think “Damage Containment”
Scrutinize resource pools, they get
exhausted when the lower layer fails.
Defend with “Use Timeouts” and “Circuit
Breaker”.

Friday, May 25, 12

Users

Ways that users cause instability
Sheer traffic

Flash mobs

Click-happy

Malicious users
Screen-scrapers

Badly configured proxy servers

Can’t live with them...

Friday, May 25, 12

Two types of “bad” user

Buyers
Most expensive type of user to service: more
pages, more integration points, and SSL

High conversion rate is bad for the systems.

Bargain hunters/Screen scrapers
Create useless sessions

Divert, throttle, or avoid creating sessions

Especially for spiders

Friday, May 25, 12

Handle Traffic Surges
Gracefully

Turn off expensive features when the system is busy.

Divert or throttle users. Preserve a good experience
for some when you can’t serve all.

Reduce the burden of serving each user. Be
especially frugal with memory.

Hold IDs, not object graphs.

Hold query parameters, not result sets.

Differentiate people from bots. Don’t keep sessions
for bots.

Friday, May 25, 12

Remember This

Minimize the memory you devote to each
user.
Malicious users are out there.
But, so are weird random ones.
Users come in clumps: one, a few, or way
too many.

Friday, May 25, 12

Blocked Threads

Most common form of “crash”: all request threads blocked
Very difficult to test for

Combinatoric permutation of code pathways.
Safe code can be extended in unsafe ways.
Errors are sensitive to timing and difficult to reproduce
Dev & QA servers never get hit with 10,000 concurrent
requests.

Best bet: keep threads isolated. Use well-tested, high-level
constructs for cross-thread communication.

Learn to use java.util.concurrent or System.Threading

Request handling threads are precious. Protect them.

Friday, May 25, 12

Pernicious and Cumulative

Hung request handlers reduce the server’s capacity.
Eventually, a restart will be required.
Each hung request handler indicates a frustrated
user or waiting caller
The effect is non-linear and accelerating

Each remaining thread serves 1/N-1 extra requests

Friday, May 25, 12

Example: Blocking calls

Friday, May 25, 12

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

Friday, May 25, 12

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

In GlobalObjectCache.get(String id), a synchronized method:
Object obj = items.get(id);
if(obj == null) {
 obj = remoteSystem.lookup(id);
}
…

Friday, May 25, 12

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

In GlobalObjectCache.get(String id), a synchronized method:
Object obj = items.get(id);
if(obj == null) {
 obj = remoteSystem.lookup(id);
}
…

Remote system stopped responding due to “Unbalanced
Capacities”

Friday, May 25, 12

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

In GlobalObjectCache.get(String id), a synchronized method:
Object obj = items.get(id);
if(obj == null) {
 obj = remoteSystem.lookup(id);
}
…

Remote system stopped responding due to “Unbalanced
Capacities”
Threads piled up like cars on a foggy freeway.

Friday, May 25, 12

Remember This

Scrutinize resource pools. Don’t wait
forever.
Use proven constructs.
Beware the code you cannot see.
Defend with “Use Timeouts”.

Friday, May 25, 12

Attacks of Self-Denial

Ever heard this one?
A retailer offered a great promotion
to a “select group of customers”.
Approximately a bazillion times the
expected customers show up for the
offer.
The retailer gets crushed,
disappointing the avaricious and
legitimate.

It’s a self-induced Slashdot effect.

Good marketing can kill your system at any time.

Friday, May 25, 12

Attacks of Self-Denial

Ever heard this one?
A retailer offered a great promotion
to a “select group of customers”.
Approximately a bazillion times the
expected customers show up for the
offer.
The retailer gets crushed,
disappointing the avaricious and
legitimate.

It’s a self-induced Slashdot effect.

Good marketing can kill your system at any time.

Victoria’s Secret:
Online Fashion Show

BestBuy: XBox 360
Preorder

Amazon: XBox 360
Discount

Anything on
FatWallet.com

Friday, May 25, 12

Defending the Ramparts

Avoid deep links
Set up static landing pages
Only allow the user’s second click
to reach application servers
Allow throttling of incoming users
Set up lightweight versions of
dynamic pages.
Use your CDN to divert users
Use shared-nothing architecture

One email I saw went out
with a deep link that

bypassed Akamai. Worse,
it encoded a specific server
and included a session ID.

Another time, an email went
out with a promo code. It

could be used an unlimited
number of times.

Once a vulnerability is
found, it will be flooded

within seconds.

Friday, May 25, 12

Remember This

Keep lines of communication open
Support the marketers. If you don’t, they’ll
invent their way around you, and might
jeopardize the systems.

Protect shared resources
Expect instantaneous distribution of exploits

Friday, May 25, 12

Scaling Effects

Ratios in dev and QA tend to be 1:1
Web server to app server

Front end to back end

They differ wildly in production, so designs
and architectures may not be appropriate

Understand which end of the lever you are sitting on.

Friday, May 25, 12

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, May 25, 12

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, May 25, 12

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, May 25, 12

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, May 25, 12

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, May 25, 12

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, May 25, 12

App 1 App 2

Common

Service

App 3 App 4 App 5 App 6 App 7 App 8

Example: Shared Resources

Shared resources commonly appear as lock managers, load
managers, query distributors, cluster managers, and message

gateways. They’re all vulnerable to scaling effects.

Friday, May 25, 12

Remember This

Examine production versus QA environments
to spot scaling effects.
Watch out for point-to-point communications.
It rarely belongs in production.
Watch out for shared resources.

Friday, May 25, 12

Unbalanced Capacities

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts

75 Instances

3,000 Threads

Order
Management

6 Hosts

6 Instances

450 Threads

Scheduling

1 Host

1 Instance

25 Threads

Traffic floods sometimes start inside the data center walls.

Friday, May 25, 12

Unbalanced Capacities

Unbalanced capacities is a type of scaling effect
that occurs between systems in an enterprise.
It happens because

All dev systems are one server

Almost all QA environments are two servers

Production environments may be 10:1 or 100:1

May be induced by changes in traffic or behavior
patterns

Friday, May 25, 12

Remember This

Examine server and thread counts
Watch out for changes in traffic patterns
Stress both sides of the interface in QA
Simulate back end failures during testing

Friday, May 25, 12

Slow Responses

What does your server do when it’s overloaded?
“Connection refused” is a fast failure, the caller’s
thread is released right away

A slow response ties up the caller’s thread, makes
the user wait

It uses capacity on caller and receiver

If the caller times out, then the work was wasted

Slow response is worse than no response

Friday, May 25, 12

Slow Responses

Look at the latency:
TCP connection refused comes back in ~10 ms
TCP packets not acknowledged, sender
retransmits for 1 – 10 min

Causes of slow responses:
Too much load on system
Transient network saturation
Firewall overloaded
Protocol with retries built in (NFS, DNS)
Chatty remote protocols

Friday, May 25, 12

Remember This

Slow responses trigger cascading failures
For websites, slow responses invite more
traffic as the users pound “reload”
Don’t send a slow response; fail fast
Hunt for memory leaks or resource contention

Friday, May 25, 12

SLA Inversion
Surviving by luck alone.

Frammitz

99.99%

Corporate MTA

99.999%

SpamCannon's

DNS

98.5%

SpamCannon's

Applications

99%

Corporate DNS

99.9%

Inventory

99.9%

Message

Broker

99%

Partner 1's

Application

No SLA

Partner 1's

DNS

99%

Message

Queues

99.99%

Pricing and

Promotions

No SLA

What SLA can Frammitz really guarantee?
Do your web servers have

to ask DNS to find the
application server’s IP

address?

Absent other protections,
the best SLA you can
offer is the worst SLA

provided by your
dependencies.

The dreaded SPOF is a
special case of SLA

Inversion.

Friday, May 25, 12

Remember This

Don’t make empty promises. Be sure you can
deliver the SLA you commit to.
Examine every dependency. Verify that they can
deliver on their promises.
Decouple your SLAs from your dependencies’.
Measure availability by feature, not by server.
Be wary of “enterprise” services such as DNS,
SMTP, and LDAP.

Friday, May 25, 12

Unbounded Result Sets

Development and testing is done with small data sets
Test databases get reloaded frequently
Queries that perform acceptably in development and
test bonk badly with production data volume.

Bad access patterns can make them very slow

Too many results can use up all your server’s RAM or take
too long to process

You never know when somebody else will mess with your
data

Limited resources, unlimited data volume

Friday, May 25, 12

Unbounded Result Sets:
Databases

SQL queries have no inherent limits
ORM tools are bad about this
It starts as a degenerating performance problem, but
can tip the system over.
For example:

Application server using database table to pass message between servers.

Normal volume 10 – 20 events at a time.

Time-based trigger on every user generated 10,000,000+ events at midnight.

Each server trying to receive all events at startup.

Out of memory errors at startup.

Friday, May 25, 12

Unbounded Result Sets: SOA

Often found in chatty remote protocols, together
with the N+1 query problem
Causes problems on the client and the server

On server: constructing results, marshalling XML

On client: parsing XML, iterating over results.

This is a breakdown in handshaking. The client
knows how much it can handle, not the server.

Friday, May 25, 12

Remember This

Test with realistic data volumes
Scrubbed production data is the best.

Generated data also works.

Don’t rely on the data producers. Their
behavior can change overnight.
Put limits in your application-level protocols:

WS, RMI, DCOM, XML-RPC, etc.

Friday, May 25, 12

Stability Patterns

38
Friday, May 25, 12

Use Timeouts

In any server-based application, request
handling threads are your most precious
resource

When all are busy, you can’t take new requests

When they stay busy, your server is down

Busy time determines overall capacity

Protect request handling threads at all costs

Don’t hold your breath.

Friday, May 25, 12

Considerations

Calling code must be prepared for timeouts.
Better error handling is a good thing anyway.

Beware third-party libraries and vendor APIs.

Examples:
Veritas’s K2 client library does its own connection pooling, without timeouts.

Java’s standard HTTP user agent does not use read or write timeouts.

Java programmers:
Always use Socket.setSoTimeout(int timeout)

Friday, May 25, 12

Remember This

Apply to Integration Points, Blocked Threads,
and Slow Responses
Apply to recover from unexpected failures.
Consider delayed retries. (See Circuit Breaker.)

Friday, May 25, 12

Circuit Breaker

Have you ever seen a remote call wrapped with
a retry loop?
 int remainingAttempts = MAX_RETRIES;

 while(--remainingAttempts >= 0) {
 try {
 doSomethingDangerous();
 return true;
 } catch(RemoteCallFailedException e) {
 log(e);
 }
 }
 return false;

Why?

Defend yourself.

Friday, May 25, 12

Faults Cluster

Problems with the remote host,
application or the intervening
network are likely to persist
for an extended period
of time... minutes or
maybe even hours

Friday, May 25, 12

Faults Cluster

Fast retries only help for dropped packets,
and TCP already handles that for you.
Most of the time, the retry loop will come
around again while the fault still persists.
Thus, immediate retries are overwhelmingly
likely to also fail.

Friday, May 25, 12

Retries Hurt Users and
Systems

Systems:
Ties up caller’s resources,
reducing overall capacity.
If target service is busy,
retries increase its load at the
worst time.
Every single request will go
through the same retry loop,
letting a back-end problem
cause a front-end brownout.

Users:
Retries make the user wait
even longer to get an error
response.
After the final retry, what
happens to the users’ work?
The target service may be
non-critical, so why damage
critical features for it?

Friday, May 25, 12

Stop Banging Your Head

Circuit Breaker:
Wraps a “dangerous” call
Counts failures
After too many failures, stop
passing calls through
After a “cooling off” period, try
the next call
If it fails, wait for another cooling
off time before calling again

Closed

on call / pass through
call succeeds / reset count
call fails / count failure
threshold reached / trip breaker

Open

on call / fail
on timeout / attempt reset

pop

Half-Open

on call/pass through
call succeeds/reset
call fails/trip breaker

attempt
reset

reset pop

Friday, May 25, 12

Considerations

Circuit Breaker exists to sever malfunctioning features.
Calling code must be prepared to degrade gracefully.
Critical work must be queued for later processing

Might motivate changes in business rules. Conversation needed!

Threading is very tricky... get it right once, then reuse the
component.

Avoid serializing all calls through the CB

Deal with state transitions during a long call

Can be used locally, too. Around connection pool
checkouts, for example.

Friday, May 25, 12

Remember This

Don’t do it if it hurts.
Use Circuit Breakers together with Timeouts
Expose, track, and report state changes
Circuit Breakers prevent Cascading Failures
They protect against Slow Responses

Friday, May 25, 12

Bulkheads

Increase resilience by partitioning
(compartmentalizing) the system

One part can go dark without losing
service entirely

Apply at several levels
Thread pools within a process
CPUs in a server (CPU binding)
Server pools for priority clients

Save part of the ship, at least.

Wikipedia says:
Compartmentalization

is the general technique
of separating two or

more parts of a system
in order to prevent
malfunctions from

spreading between or
among them.

Friday, May 25, 12

Common Mode Dependency:
Service-Oriented Architecture

Surging demand–or bad code–
in Foo can deny service to Bar.

Foo Bar

Baz

An single outage in Baz will
take eliminate service to both

Foo and Bar.

(Cascading Failure)

Foo and Bar are
coupled by their shared

use of Baz

Friday, May 25, 12

SOA with Bulkheads

Foo Bar

Baz

Baz

Pool 1

Baz

Pool 2

Foo and Bar each have
dedicated resources

from Baz.

Surging demand–or bad code–
in Foo only harms Foo.

Each pool can be rebooted, or
upgraded, independently.

Friday, May 25, 12

Considerations

Partitioning is both an engineering and an economic
decision. It depends on SLAs the service requires and the
value of individual consumers.

Consider creating a single “non-priority” partition.
Governance needed to define priorities across
organizational boundaries.

Capacity tradeoff: less resource sharing across pools.
Exception: virtualized environments allow partitioning and
capacity balancing.

Friday, May 25, 12

Remember This

Save part of the ship
Decide whether to accept less efficient use of
resources
Pick a useful granularity
Very important with shared-service models
Monitor each partitions performance to SLA

Friday, May 25, 12

Steady State

Run without crank-turning and hand-holding
Human error is a leading cause of downtime

Therefore, minimize opportunities for error

Avoid the “ohnosecond”: eschew fiddling

If regular intervention is needed, then
missing the schedule will cause downtime

Therefore, avoid the need for intervention

Run indefinitely without fiddling.

Friday, May 25, 12

x

y

h

Routinely Recycle Resources
All computing resources are finite
For every mechanism that accumulates
resources, there must be some
mechanism to reclaim those
resources

In-memory caching

Database storage

Log files

Friday, May 25, 12

Three Common Violations of
Steady State

Runaway Caching
Meant to speed up
response time

When memory low,
can cause more GC

Database Sludge
Rising I/O rates

Increasing latency

DBA action ⇒
application errors

Gaps in collections

Unresolved references

Log File Filling
Most common ticket
in Ops

Best case: lose logs

Worst case: errors

∴ Compress, rotate, purge
∴ Limit by size, not time

∴ Build purging into app∴ Limit cache size,
 make “elastic”

Friday, May 25, 12

Three Common Violations of
Steady State

Runaway Caching
Meant to speed up
response time

When memory low,
can cause more GC

Database Sludge
Rising I/O rates

Increasing latency

DBA action ⇒
application errors

Gaps in collections

Unresolved references

Log File Filling
Most common ticket
in Ops

Best case: lose logs

Worst case: errors

∴ Compress, rotate, purge
∴ Limit by size, not time

∴ Build purging into app∴ Limit cache size,
 make “elastic”

How long is your shortest fuse?

Friday, May 25, 12

In crunch mode, it’s hard to make
time for housekeeping functions.

Features always take priority over
data purging.

This is a false trade: one-time
development cost for ongoing

operational costs.

Friday, May 25, 12

Remember This

Avoid fiddling
Purge data with application logic
Limit caching
Roll the logs

Friday, May 25, 12

Fail Fast

Imagine waiting all the way through the line
at the Department of Motor Vehicles,
just to be sent back to fill out a
different form.

Don’t burn cycles, occupy
threads and keep callers
waiting, just to slap them
in the face.

Don’t make me wait to receive an error.

Friday, May 25, 12

Predicting Failure

Several ways to determine if a request will
fail, before actually processing it:

Good old parameter-checking

Acquire critical resources early

Check on internal state:
Circuit Breakers

Connection Pools

Average latency vs. committed SLAs

Friday, May 25, 12

Being a Good Citizen by
Failing Fast

In a multi-tier application or SOA, Fail Fast
avoids common antipatterns:

Slow Responses

Blocked Threads

Cascading Failure

Helps preserve capacity when parts of
system have already failed.

Friday, May 25, 12

Remember This

Avoid Slow Responses; Fail Fast
Reserve resources, verify integration points early
Validate input; fail fast if not possible to process
request

Friday, May 25, 12

Test Harness

Many failure modes are hard to create in
unit or functional tests
Integration tests can verify response to “in-
spec” behavior, but not “out-of-spec” errors.

Violate every protocol in every way possible.

Friday, May 25, 12

The caller can always feed bad parameters
to the service and verify expected errors.
Switches and test modes in the integration
test environments can force other errors, at
the cost of test modes in the code base.
But what about really weird, “out of
specification” errors?

Provoking Failure Modes

Friday, May 25, 12

“In Spec” vs. “Out of Spec”

“In Spec” failures
TCP connection refused
HTTP response code 500
Error message in XML
response

Example: Request-Reply using XML over HTTP

Well-Behaved Errors Wicked Errors

“Out of Spec” failures

TCP connection accepted, but no data
sent

TCP window full, never cleared

Server never ACKs TCP, causing very
long delays as client retransmits

Connection made, server replies with
SMTP hello string

Server sends HTML “link-farm” page

Server sends one byte per second

Server sends Weird Al catalog in MP3

Friday, May 25, 12

“Out-of-spec” errors
happen all the time in the

real world.

They never happen
during testing...

unless you force them to.

Friday, May 25, 12

A killer test harness:
Runs in its own process

Substitutes for the remote end of an interface

Can run locally (dev) or remotely (dev or QA)

Is totally evil

Killer Test Harness

Friday, May 25, 12

Port Nastiness
19720 Allows connections requests into the queue, but never accepts them.

19721 Refuses all connections

19722 Reads requests at 1 byte / second

19723 Reads HTTP requests, sends back random binary

19724 Accepts requests, sends responses at 1 byte / sec.

19725 Accepts requests, sends back the entire OS kernel image.

19726 Send endless stream of data from /dev/random

Just a Few Evil Ideas

Now those are some out-of-spec errors.

Friday, May 25, 12

Remember This

Produce out-of-spec failures to ensure
robustness of the caller
Stress the caller
Leverage shared harnesses across interfaces
and projects, for common network-level errors
Supplement, don’t replace, other testing methods

Friday, May 25, 12

Decoupling Middleware

Most stability problems arise due to
excessively tight coupling.
Synchronous request-reply calls are
particularly risky.

Ties up request-processing threads.

May not ever come back.

Fire and forget.

Friday, May 25, 12

In-Process
Method Calls

Shared Memory
Pipes

Semaphores
Windows Events

Interprocess
Communication

C Functions
Java Calls

Dynamic Libs

DCE RPC
DCOM

RMI
XML-RPC

HTTP

Remote
Procedure Calls

Same Time
Same Host

Same Process

Different Time
Different Host

Different Process

Same Time
Different Host

Different Process

MQ
Pub-Sub

SMTP
SMS

Message-Oriented
Middleware

JavaSpaces
TSpaces

GigaSpaces

Tuple Spaces

Spectrum of Coupling

Request-reply: logical simplicity, operational complexity
Message passing: logical complexity, operational simplicity
Tuple Spaces: logical complexity, operational complexity

Friday, May 25, 12

Consideration

Changing middleware usually implies a rewrite.
Changing from synchronous to asynchronous
semantics implies business rule discussions.
Middleware decisions are often handed down
from the ivory tower.

Friday, May 25, 12

Remember This

Decide at the last responsible moment.
Avoid many failure modes at once by total
decoupling.
Learn many architecture styles, choose among
them as appropriate.

Friday, May 25, 12

Integration Points

Cascading Failures

Users

Blocked Threads

Attacks of
Self-Denial

Scaling Effects

Unbalanced
Capacities

Slow Responses

SLA Inversion

Unbounded
Result Sets Use Timeouts

Circuit Breaker

Bulkheads

Steady State

Fail Fast

Handshaking

Test Harness

Decoupling
Middleware

counters

prevents

counters

counters

reduces impact

mitigates

finds problems in

damage

mutual

aggravation

found

near
leads to

leads toleads to

results from

violating

counters

counters

counters can avoid

leads to

avoids

counters

counters

exacerbates

lead to

works with

counters

leads to

Chain Reactions

Friday, May 25, 12

© Michael Nygard, 2007-2012 75

Michael Nygard
mtnygard@thinkrelevance.com

@mtnygard

Friday, May 25, 12

mailto:mtnygard@thinkrelevance.com
mailto:mtnygard@thinkrelevance.com
mailto:mtnygard@thinkrelevance.com
mailto:mtnygard@thinkrelevance.com

