
Concurrency In Practice

erik rozendaal

A Case Study

Friday, May 25, 12



Introduction

Friday, May 25, 12



who am i?

Erik Rozendaal, software developer, etc.

email: !  erozendaal@zilverline.com
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who am i?

Erik Rozendaal, software developer, etc.

email: !  erozendaal@zilverline.com
twitter: @erozendaal

(... and I did not write that CQRS framework)
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                         RPKI Validator   

• Open Source (BSD license)

• Developed at the RIPE NCC (www.ripe.net)

• Aimed at Internet router administrators

• http://www.ripe.net/lir-services/resource-
management/certification/tools-and-resources

Scalaz
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• The RIPE NCC is one of five Regional 
Internet Registries (RIRs) providing Internet 
resource allocations, registration services 
and coordination activities that support the 
operation of the Internet globally.

• Basically, helps ensure that every Internet 
Address is uniquely distributed and the Internet 
keeps working
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Internet Routing 101

AS 9

AS 23

AS 3

AS 4

Where is 172.16.0.1? 

Send everything starting 
with 172.16 to me!

Can I verify this?

Here’s my certified 
Route Origin 

Authorization (ROA)
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Internet Resource PKI (RPKI)
• Distributed database of cryptographically signed statements 

about resources

• IETF standard

• Rooted at the five Regional Internet Registries (RIRs)

• AfriNIC - Africa

• ARIN - United States, Canada, ...

• APNIC - Asia, Australia, New Zealand, ...

• LACNIC - Latin America, ...

• RIPE NCC - Europe, Russia, Middle East, ...
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Big Picture
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Immutability
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Immutability

• An immutable object is an object 
whose state cannot be modified after it is 
created

• Immutable objects can be safely shared 
between multiple threads

• Scala makes it easy to define immutable 
objects and defaults to full set of immutable 
collection types
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Immutable collections?
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Immutable collections?
def add(x: Int, y: Int) = {
  var result = 0
  result += x
  result += y
  result
}
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Immutable collections?
def add(x: Int, y: Int) = {
  var result = 0
  result += x
  result += y
  result
}

def concat(x: List, y: List) = {
  val result = new ArrayList()
  result.addAll(x)
  result.addAll(y)
  result
}

Friday, May 25, 12



Immutable collections?
def add(x: Int, y: Int) = {
  var result = 0
  result += x
  result += y
  result
}

def concat(x: List, y: List) = {
  val result = new ArrayList()
  result.addAll(x)
  result.addAll(y)
  result
}

def add(x: Int, y: Int) =
  x + y
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Immutable collections?
def add(x: Int, y: Int) = {
  var result = 0
  result += x
  result += y
  result
}

def concat(x: List, y: List) = {
  val result = new ArrayList()
  result.addAll(x)
  result.addAll(y)
  result
}

def add(x: Int, y: Int) =
  x + y

def concat(x: List, y: List) =
  x ++ y
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Immutable collections?
def add(x: Int, y: Int) = {
  var result = 0
  result += x
  result += y
  result
}

def concat(x: List, y: List) = {
  val result = new ArrayList()
  result.addAll(x)
  result.addAll(y)
  result
}

def add(x: Int, y: Int) =
  x + y

def concat(x: List, y: List) =
  x ++ y

Immutability is the difference between 
java.util.Calendar and org.joda.time.DateTime
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Memory Image
case class MemoryImage(
  trustAnchors    : Vector[TrustAnchor],
  validatedObjects: Vector[ValidatedObject], 
  filters         : Vector[Filter], 
  whitelist       : Vector[WhitelistEntry], 
  version         : Int = 0)

case class TrustAnchor(
  locator         : TrustAnchorLocator,
  status          : ProcessingStatus,
  enabled         : Boolean = true)

// Etc.
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Memory Image

• Initially access was controlled using a single 
AtomicReference containing the most 
recent instance

• http://martinfowler.com/bliki/MemoryImage.html
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Memory Image Implementation
object MemoryImage {
  private[this] val memoryImage =
    new AtomicReference(MemoryImage(...))

Friday, May 25, 12



Memory Image Implementation
object MemoryImage {
  private[this] val memoryImage =
    new AtomicReference(MemoryImage(...))

  // Reading
  def get: MemoryImage = memoryImage.get
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Memory Image Implementation
object MemoryImage {
  private[this] val memoryImage =
    new AtomicReference(MemoryImage(...))

  // Reading
  def get: MemoryImage = memoryImage.get

  // Updating
  @tailrec 
  def modify(f: MemoryImage => MemoryImage): MemoryImage = {
    val current = memoryImage.get
    val updated = f(current)
    if (memoryImage.compareAndSet(current, updated)) updated
    else modify(f) // Retry
  }
}
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Memory Image Implementation
object MemoryImage {
  private[this] val memoryImage =
    new AtomicReference(MemoryImage(...))

  // Reading
  def get: MemoryImage = memoryImage.get

  // Updating
  @tailrec 
  def modify(f: MemoryImage => MemoryImage): MemoryImage = {
    val current = memoryImage.get
    val updated = f(current)
    if (memoryImage.compareAndSet(current, updated)) updated
    else modify(f) // Retry
  }
}

// Example update
MemoryImage.modify { memoryImage =>
  memoryImage.copy(filters = /* updated filters */)
}
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Atomic Reference

• Fast and lock-free!

• Callback to modify may be run multiple times, 
so avoid side-effects
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Atomic Reference

• Fast and lock-free!

• Callback to modify may be run multiple times, 
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• ... but AtomicReferences do not compose, 
hurting modularity
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Atomic Reference

• Fast and lock-free!

• Callback to modify may be run multiple times, 
so avoid side-effects

• ... but AtomicReferences do not compose, 
hurting modularity

• Try updating two AtomicReferences 
atomically...
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Atomic Reference

• Fast and lock-free!

• Callback to modify may be run multiple times, 
so avoid side-effects

• ... but AtomicReferences do not compose, 
hurting modularity

• Try updating two AtomicReferences 
atomically...

• (the same is true for locks)
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Software Transactional 
Memory

• Take the idea of a database transaction 
(ACID) and apply it to your in-memory 
data structures (ACI)

• Composable: bigger transactions can be 
created from existing, smaller transactions

• Not just for concurrency: mutations are 
automatically cleaned up on transaction 
rollback

http://nbronson.github.com/scala-stm/
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Software Transactional 
Memory
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Software Transactional 
Memory

import scala.concurrent.stm._
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Software Transactional 
Memory

import scala.concurrent.stm._

// Global reference to current memory image
val memoryImage = Ref(MemoryImage(initial state))
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Software Transactional 
Memory

import scala.concurrent.stm._

// Global reference to current memory image
val memoryImage = Ref(MemoryImage(initial state))

// Example read & update
atomic { implicit txn =>
  memoryImage() = memoryImage().copy(
    filters = updated filters)
}
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}
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    filters = updated filters)
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Software Transactional 
Memory

import scala.concurrent.stm._

// Global reference to current memory image
val memoryImage = Ref(MemoryImage(initial state))

// Example read & update
atomic { implicit txn =>
  memoryImage() = memoryImage().copy(
    filters = updated filters)
}

Parentheses to read 
the current valueParentheses and 

assignment to update

Represents current 
transaction
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STM Pitfalls

• Atomic block may be retried, so only 
mutate data managed by STM. Bad:
var start = false
atomic { implicit txn =>
  memoryImage().trustAnchors.
    find    { ta => ta.locator == trustAnchorLocator }.
    filter  { ta => ta.enabled && ta.status.isIdle }.
    foreach { ta =>
      memoryImage() = memoryImage().
        startProcessingTrustAnchor(ta.locator)
      start = true
    }
}
if (start) runValidation()
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STM Pitfalls

• Atomic block may be retried, so only 
mutate data managed by STM. Good:

val start = atomic { implicit txn =>
  memoryImage().trustAnchors.
    find    { ta => ta.locator == trustAnchorLocator }.
    filter  { ta => ta.enabled && ta.status.isIdle }.
    map     { ta =>
      memoryImage() = memoryImage().
        startProcessingTrustAnchor(ta.locator)
    }.isDefined
}

if (start) runValidation()
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Agents
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Agents of T

• Always share 
current state, 
reading is “free”

• Queue of pending 
updates, executed 
in the background, 
sequentially

Agent[T]

Reads never block

Updates T => T 
are queued

Executed sequentially
in the background
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Agent Example

private val _validatedAnnouncements =
  Agent(Vector.empty[ValidatedAnnouncement])
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Agent Example

private val _validatedAnnouncements =
  Agent(Vector.empty[ValidatedAnnouncement])

def validatedAnnouncements = _validatedAnnouncements()
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Agent Example

private val _validatedAnnouncements =
  Agent(Vector.empty[ValidatedAnnouncement])

def validatedAnnouncements = _validatedAnnouncements()

def revalidate(announcements: Seq[BgpAnnouncement],
               roas         : Seq[Roa]) {
  _validatedAnnouncements.sendOff {
    _ => validate(announcements, roas)
  }
}
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Agents integrate with STM

• Allows you to update some state and send 
a computation to an Agent when a STM 
transaction commits

• Comparable to using a transactional 
database and message queue, but in-
memory
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Agent Example

private val memoryImage =
  Ref(MemoryImage(initial state))
private val bgpAnnouncements =
  Ref(Vector.empty[BgpAnnouncement])
private val validatedAnnouncements =
  Agent(Vector.empty[ValidatedAnnouncement])

// Update and start announcement validation
atomic { implicit txn =>
  memoryImage() = memoryImage().copy(filters = Vector.empty)
  val roas = memoryImage().validatedObjects.roas
  val announcements = bgpAnnouncements()
  _validatedAnnouncements.sendOff { _ =>
    validate(announcements, roas)
  }
}
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Futures
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Future of T

• Represents a value of type T that may not 
be available yet

• Expensive computation, network access, 
asynchronous I/O, etc.
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Future of T

• Represents a value of type T that may not 
be available yet

• Expensive computation, network access, 
asynchronous I/O, etc.

• Can be composed, unlike background 
threads:
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Future of T

• Represents a value of type T that may not 
be available yet

• Expensive computation, network access, 
asynchronous I/O, etc.

• Can be composed, unlike background 
threads:

  def traverse[A, B](items: List[A])
                    (f: A => Future[B])
                    (implicit executor: ExecutionContext):
         Future[List[B]]
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Future of T

• Represents a value of type T that may not 
be available yet

• Expensive computation, network access, 
asynchronous I/O, etc.

• Can be composed, unlike background 
threads:

  def traverse[A, B](items: List[A])
                    (f: A => Future[B])
                    (implicit executor: ExecutionContext):
         Future[List[B]]

E.g. list of URLs to 
retrieve

Friday, May 25, 12



Future of T

• Represents a value of type T that may not 
be available yet

• Expensive computation, network access, 
asynchronous I/O, etc.
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Future of T

• Represents a value of type T that may not 
be available yet

• Expensive computation, network access, 
asynchronous I/O, etc.

• Can be composed, unlike background 
threads:

  def traverse[A, B](items: List[A])
                    (f: A => Future[B])
                    (implicit executor: ExecutionContext):
         Future[List[B]]

E.g. list of URLs to 
retrieve

E.g. fetch URL How much 
concurrency?
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Future of T

• Represents a value of type T that may not 
be available yet

• Expensive computation, network access, 
asynchronous I/O, etc.

• Can be composed, unlike background 
threads:

  def traverse[A, B](items: List[A])
                    (f: A => Future[B])
                    (implicit executor: ExecutionContext):
         Future[List[B]]

E.g. list of URLs to 
retrieve

E.g. fetch URL How much 
concurrency?

Completed when all complete
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Concurrent Download

val bgpRisDumpUrls = List(
  "http://www.ris.ripe.net/dumps/riswhoisdump.IPv4.gz",
  "http://www.ris.ripe.net/dumps/riswhoisdump.IPv6.gz")
def downloadBgpRisDump(url: String): Future[BgpRisDump] = ...

Future.traverse(bgpRisDumpsUrls) { url => 
  downloadBgpRisDump(url)
}.foreach { bgpRisDump =>
  // All files have been downloaded, potentially in parallel.
}
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Parallelism
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Concurrency: program with multiple, independent 
threads of control. Non-deterministic, since the 
outcome may depend on the particular interleaving at 
runtime.
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Concurrency: program with multiple, independent 
threads of control. Non-deterministic, since the 
outcome may depend on the particular interleaving at 
runtime.

Parallelism: runs on multiple processors, hopefully 
making it run faster. No other affect on program 
outcome.
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Parallel collections
Problem: validate ~435,000 BGP announcements 
against ~2,000 route origin authorizations

val result = announcements.map { announcement =>
  val matching = roas.findMatching(announcement.prefix)
  val (validates, invalidates) =
    matching.partition { roa => roa.isValid(announcement) }

  ValidatedAnnouncement(
    announcement, validates, invalidates)
}
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Parallel collections
Problem: validate ~435,000 BGP announcements 
against ~2,000 route origin authorizations

val result = announcements.par.map { announcement =>
  val matching = roas.findMatching(announcement.prefix)
  val (validates, invalidates) =
    matching.partition { roa => roa.isValid(announcement) }

  ValidatedAnnouncement(
    announcement, validates, invalidates)
}.seq
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Parallel collections

• Sequential: 	

 ~1.4 seconds,
Parallel:	

 	

 ~0.8 seconds (75% faster)

• Can be a quick win for CPU-bound tasks

• Deterministic in absence of side-effects, only 
the performance changes (same, better, worse)

• Often preferable to implementing a smarter 
algorithm

• We also use this in UI table filtering
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Actors
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Actors

• Aren’t Akka and Scala all about actors?

• Planning to try actors to replace Validator-to-
Router communication implementation

• Currently uses Netty ChannelHandlers

• Low-level, hard to test, hard to get right

• Replace with Akka I/O manager and one 
actor per  router?
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Conclusion
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• Immutability is golden and so are side-effect free 
functions

• Concurrency is (still) hard

• But parallelism much easier, almost free

• No single solution to the concurrency problem, 
use the right tool for the problem at hand

• Scala (like Clojure and Haskell) provides lots of 
tools that mostly integrate well

Conclusion

Friday, May 25, 12



... and not covered

• Basic Java concurrency (synchronized, notify, 
wait), java.util.concurrent

• The LMAX Disruptor and the single writer 
principle

• Dataflow concurrency

• Reactive programming

• Events, event bus, event loops

• Etc.
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Questions?
erik rozendaal

Friday, May 25, 12


