
Concurrency In Practice

erik rozendaal

A Case Study

Friday, May 25, 12

Introduction

Friday, May 25, 12

who am i?

Erik Rozendaal, software developer, etc.

email: ! erozendaal@zilverline.com
twitter: @erozendaal

Friday, May 25, 12

mailto:erozendaal@zilverline.com
mailto:erozendaal@zilverline.com

who am i?

Erik Rozendaal, software developer, etc.

email: ! erozendaal@zilverline.com
twitter: @erozendaal

(... and I did not write that CQRS framework)

Friday, May 25, 12

mailto:erozendaal@zilverline.com
mailto:erozendaal@zilverline.com

 RPKI Validator

• Open Source (BSD license)

• Developed at the RIPE NCC (www.ripe.net)

• Aimed at Internet router administrators

• http://www.ripe.net/lir-services/resource-
management/certification/tools-and-resources

Scalaz
Friday, May 25, 12

http://www.ripe.net
http://www.ripe.net
http://www.ripe.net/lir-services/resource-management/certification/tools-and-resources
http://www.ripe.net/lir-services/resource-management/certification/tools-and-resources
http://www.ripe.net/lir-services/resource-management/certification/tools-and-resources
http://www.ripe.net/lir-services/resource-management/certification/tools-and-resources

• The RIPE NCC is one of five Regional
Internet Registries (RIRs) providing Internet
resource allocations, registration services
and coordination activities that support the
operation of the Internet globally.

• Basically, helps ensure that every Internet
Address is uniquely distributed and the Internet
keeps working

Friday, May 25, 12

Internet Routing 101

AS 9

AS 23

AS 3

AS 4

Friday, May 25, 12

Internet Routing 101

AS 9

AS 23

AS 3

AS 4

Where is 172.16.0.1?

Friday, May 25, 12

Internet Routing 101

AS 9

AS 23

AS 3

AS 4

Where is 172.16.0.1?

Send everything starting
with 172.16 to me!

Friday, May 25, 12

Internet Routing 101

AS 9

AS 23

AS 3

AS 4

Where is 172.16.0.1?

Send everything starting
with 172.16 to me!

Can I verify this?

Friday, May 25, 12

Internet Routing 101

AS 9

AS 23

AS 3

AS 4

Where is 172.16.0.1?

Send everything starting
with 172.16 to me!

Can I verify this?

Here’s my certified
Route Origin

Authorization (ROA)

Friday, May 25, 12

Internet Resource PKI (RPKI)
• Distributed database of cryptographically signed statements

about resources

• IETF standard

• Rooted at the five Regional Internet Registries (RIRs)

• AfriNIC - Africa

• ARIN - United States, Canada, ...

• APNIC - Asia, Australia, New Zealand, ...

• LACNIC - Latin America, ...

• RIPE NCC - Europe, Russia, Middle East, ...

Friday, May 25, 12

Big Picture

RPKI Validator

Network
Router

Routing Information

Network
Router

Network
Router

Network
Router

RPKI Repository

RPKI
Repository

RPKI
Repository

rsync

RTR

HTTP

Friday, May 25, 12

demo

Friday, May 25, 12

Immutability

Friday, May 25, 12

Immutability

• An immutable object is an object
whose state cannot be modified after it is
created

• Immutable objects can be safely shared
between multiple threads

• Scala makes it easy to define immutable
objects and defaults to full set of immutable
collection types

Friday, May 25, 12

Immutable collections?

Friday, May 25, 12

Immutable collections?
def add(x: Int, y: Int) = {
 var result = 0
 result += x
 result += y
 result
}

Friday, May 25, 12

Immutable collections?
def add(x: Int, y: Int) = {
 var result = 0
 result += x
 result += y
 result
}

def concat(x: List, y: List) = {
 val result = new ArrayList()
 result.addAll(x)
 result.addAll(y)
 result
}

Friday, May 25, 12

Immutable collections?
def add(x: Int, y: Int) = {
 var result = 0
 result += x
 result += y
 result
}

def concat(x: List, y: List) = {
 val result = new ArrayList()
 result.addAll(x)
 result.addAll(y)
 result
}

def add(x: Int, y: Int) =
 x + y

Friday, May 25, 12

Immutable collections?
def add(x: Int, y: Int) = {
 var result = 0
 result += x
 result += y
 result
}

def concat(x: List, y: List) = {
 val result = new ArrayList()
 result.addAll(x)
 result.addAll(y)
 result
}

def add(x: Int, y: Int) =
 x + y

def concat(x: List, y: List) =
 x ++ y

Friday, May 25, 12

Immutable collections?
def add(x: Int, y: Int) = {
 var result = 0
 result += x
 result += y
 result
}

def concat(x: List, y: List) = {
 val result = new ArrayList()
 result.addAll(x)
 result.addAll(y)
 result
}

def add(x: Int, y: Int) =
 x + y

def concat(x: List, y: List) =
 x ++ y

Immutability is the difference between
java.util.Calendar and org.joda.time.DateTime

Friday, May 25, 12

Memory Image
case class MemoryImage(
 trustAnchors : Vector[TrustAnchor],
 validatedObjects: Vector[ValidatedObject],
 filters : Vector[Filter],
 whitelist : Vector[WhitelistEntry],
 version : Int = 0)

case class TrustAnchor(
 locator : TrustAnchorLocator,
 status : ProcessingStatus,
 enabled : Boolean = true)

// Etc.

Friday, May 25, 12

Memory Image

• Initially access was controlled using a single
AtomicReference containing the most
recent instance

• http://martinfowler.com/bliki/MemoryImage.html

Friday, May 25, 12

http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/bliki/MemoryImage.html

Memory Image Implementation
object MemoryImage {
 private[this] val memoryImage =
 new AtomicReference(MemoryImage(...))

Friday, May 25, 12

Memory Image Implementation
object MemoryImage {
 private[this] val memoryImage =
 new AtomicReference(MemoryImage(...))

 // Reading
 def get: MemoryImage = memoryImage.get

Friday, May 25, 12

Memory Image Implementation
object MemoryImage {
 private[this] val memoryImage =
 new AtomicReference(MemoryImage(...))

 // Reading
 def get: MemoryImage = memoryImage.get

 // Updating
 @tailrec
 def modify(f: MemoryImage => MemoryImage): MemoryImage = {
 val current = memoryImage.get
 val updated = f(current)
 if (memoryImage.compareAndSet(current, updated)) updated
 else modify(f) // Retry
 }
}

Friday, May 25, 12

Memory Image Implementation
object MemoryImage {
 private[this] val memoryImage =
 new AtomicReference(MemoryImage(...))

 // Reading
 def get: MemoryImage = memoryImage.get

 // Updating
 @tailrec
 def modify(f: MemoryImage => MemoryImage): MemoryImage = {
 val current = memoryImage.get
 val updated = f(current)
 if (memoryImage.compareAndSet(current, updated)) updated
 else modify(f) // Retry
 }
}

// Example update
MemoryImage.modify { memoryImage =>
 memoryImage.copy(filters = /* updated filters */)
}

Friday, May 25, 12

Atomic Reference

• Fast and lock-free!

• Callback to modify may be run multiple times,
so avoid side-effects

Friday, May 25, 12

Atomic Reference

• Fast and lock-free!

• Callback to modify may be run multiple times,
so avoid side-effects

• ... but AtomicReferences do not compose,
hurting modularity

Friday, May 25, 12

Atomic Reference

• Fast and lock-free!

• Callback to modify may be run multiple times,
so avoid side-effects

• ... but AtomicReferences do not compose,
hurting modularity

• Try updating two AtomicReferences
atomically...

Friday, May 25, 12

Atomic Reference

• Fast and lock-free!

• Callback to modify may be run multiple times,
so avoid side-effects

• ... but AtomicReferences do not compose,
hurting modularity

• Try updating two AtomicReferences
atomically...

• (the same is true for locks)

Friday, May 25, 12

Software Transactional
Memory

• Take the idea of a database transaction
(ACID) and apply it to your in-memory
data structures (ACI)

• Composable: bigger transactions can be
created from existing, smaller transactions

• Not just for concurrency: mutations are
automatically cleaned up on transaction
rollback

http://nbronson.github.com/scala-stm/
Friday, May 25, 12

http://nbronson.github.com/scala-stm/
http://nbronson.github.com/scala-stm/

Software Transactional
Memory

Friday, May 25, 12

Software Transactional
Memory

import scala.concurrent.stm._

Friday, May 25, 12

Software Transactional
Memory

import scala.concurrent.stm._

// Global reference to current memory image
val memoryImage = Ref(MemoryImage(initial state))

Friday, May 25, 12

Software Transactional
Memory

import scala.concurrent.stm._

// Global reference to current memory image
val memoryImage = Ref(MemoryImage(initial state))

// Example read & update
atomic { implicit txn =>
 memoryImage() = memoryImage().copy(
 filters = updated filters)
}

Friday, May 25, 12

Software Transactional
Memory

import scala.concurrent.stm._

// Global reference to current memory image
val memoryImage = Ref(MemoryImage(initial state))

// Example read & update
atomic { implicit txn =>
 memoryImage() = memoryImage().copy(
 filters = updated filters)
}

Parentheses to read
the current value

Friday, May 25, 12

Software Transactional
Memory

import scala.concurrent.stm._

// Global reference to current memory image
val memoryImage = Ref(MemoryImage(initial state))

// Example read & update
atomic { implicit txn =>
 memoryImage() = memoryImage().copy(
 filters = updated filters)
}

Parentheses to read
the current valueParentheses and

assignment to update

Friday, May 25, 12

Software Transactional
Memory

import scala.concurrent.stm._

// Global reference to current memory image
val memoryImage = Ref(MemoryImage(initial state))

// Example read & update
atomic { implicit txn =>
 memoryImage() = memoryImage().copy(
 filters = updated filters)
}

Parentheses to read
the current valueParentheses and

assignment to update

Represents current
transaction

Friday, May 25, 12

STM Pitfalls

• Atomic block may be retried, so only
mutate data managed by STM. Bad:
var start = false
atomic { implicit txn =>
 memoryImage().trustAnchors.
 find { ta => ta.locator == trustAnchorLocator }.
 filter { ta => ta.enabled && ta.status.isIdle }.
 foreach { ta =>
 memoryImage() = memoryImage().
 startProcessingTrustAnchor(ta.locator)
 start = true
 }
}
if (start) runValidation()

Friday, May 25, 12

STM Pitfalls

• Atomic block may be retried, so only
mutate data managed by STM. Good:

val start = atomic { implicit txn =>
 memoryImage().trustAnchors.
 find { ta => ta.locator == trustAnchorLocator }.
 filter { ta => ta.enabled && ta.status.isIdle }.
 map { ta =>
 memoryImage() = memoryImage().
 startProcessingTrustAnchor(ta.locator)
 }.isDefined
}

if (start) runValidation()

Friday, May 25, 12

Agents

Friday, May 25, 12

Agents of T

• Always share
current state,
reading is “free”

• Queue of pending
updates, executed
in the background,
sequentially

Agent[T]

Reads never block

Updates T => T
are queued

Executed sequentially
in the background

Friday, May 25, 12

Agent Example

private val _validatedAnnouncements =
 Agent(Vector.empty[ValidatedAnnouncement])

Friday, May 25, 12

Agent Example

private val _validatedAnnouncements =
 Agent(Vector.empty[ValidatedAnnouncement])

def validatedAnnouncements = _validatedAnnouncements()

Friday, May 25, 12

Agent Example

private val _validatedAnnouncements =
 Agent(Vector.empty[ValidatedAnnouncement])

def validatedAnnouncements = _validatedAnnouncements()

def revalidate(announcements: Seq[BgpAnnouncement],
 roas : Seq[Roa]) {
 _validatedAnnouncements.sendOff {
 _ => validate(announcements, roas)
 }
}

Friday, May 25, 12

Agents integrate with STM

• Allows you to update some state and send
a computation to an Agent when a STM
transaction commits

• Comparable to using a transactional
database and message queue, but in-
memory

Friday, May 25, 12

Agent Example

private val memoryImage =
 Ref(MemoryImage(initial state))
private val bgpAnnouncements =
 Ref(Vector.empty[BgpAnnouncement])
private val validatedAnnouncements =
 Agent(Vector.empty[ValidatedAnnouncement])

// Update and start announcement validation
atomic { implicit txn =>
 memoryImage() = memoryImage().copy(filters = Vector.empty)
 val roas = memoryImage().validatedObjects.roas
 val announcements = bgpAnnouncements()
 _validatedAnnouncements.sendOff { _ =>
 validate(announcements, roas)
 }
}

Friday, May 25, 12

Futures

Friday, May 25, 12

Future of T

• Represents a value of type T that may not
be available yet

• Expensive computation, network access,
asynchronous I/O, etc.

Friday, May 25, 12

Future of T

• Represents a value of type T that may not
be available yet

• Expensive computation, network access,
asynchronous I/O, etc.

• Can be composed, unlike background
threads:

Friday, May 25, 12

Future of T

• Represents a value of type T that may not
be available yet

• Expensive computation, network access,
asynchronous I/O, etc.

• Can be composed, unlike background
threads:

 def traverse[A, B](items: List[A])
 (f: A => Future[B])
 (implicit executor: ExecutionContext):
 Future[List[B]]

Friday, May 25, 12

Future of T

• Represents a value of type T that may not
be available yet

• Expensive computation, network access,
asynchronous I/O, etc.

• Can be composed, unlike background
threads:

 def traverse[A, B](items: List[A])
 (f: A => Future[B])
 (implicit executor: ExecutionContext):
 Future[List[B]]

E.g. list of URLs to
retrieve

Friday, May 25, 12

Future of T

• Represents a value of type T that may not
be available yet

• Expensive computation, network access,
asynchronous I/O, etc.

• Can be composed, unlike background
threads:

 def traverse[A, B](items: List[A])
 (f: A => Future[B])
 (implicit executor: ExecutionContext):
 Future[List[B]]

E.g. list of URLs to
retrieve

E.g. fetch URL

Friday, May 25, 12

Future of T

• Represents a value of type T that may not
be available yet

• Expensive computation, network access,
asynchronous I/O, etc.

• Can be composed, unlike background
threads:

 def traverse[A, B](items: List[A])
 (f: A => Future[B])
 (implicit executor: ExecutionContext):
 Future[List[B]]

E.g. list of URLs to
retrieve

E.g. fetch URL How much
concurrency?

Friday, May 25, 12

Future of T

• Represents a value of type T that may not
be available yet

• Expensive computation, network access,
asynchronous I/O, etc.

• Can be composed, unlike background
threads:

 def traverse[A, B](items: List[A])
 (f: A => Future[B])
 (implicit executor: ExecutionContext):
 Future[List[B]]

E.g. list of URLs to
retrieve

E.g. fetch URL How much
concurrency?

Completed when all complete
Friday, May 25, 12

Concurrent Download

val bgpRisDumpUrls = List(
 "http://www.ris.ripe.net/dumps/riswhoisdump.IPv4.gz",
 "http://www.ris.ripe.net/dumps/riswhoisdump.IPv6.gz")
def downloadBgpRisDump(url: String): Future[BgpRisDump] = ...

Future.traverse(bgpRisDumpsUrls) { url =>
 downloadBgpRisDump(url)
}.foreach { bgpRisDump =>
 // All files have been downloaded, potentially in parallel.
}

Friday, May 25, 12

Parallelism

Friday, May 25, 12

Concurrency: program with multiple, independent
threads of control. Non-deterministic, since the
outcome may depend on the particular interleaving at
runtime.

Friday, May 25, 12

Concurrency: program with multiple, independent
threads of control. Non-deterministic, since the
outcome may depend on the particular interleaving at
runtime.

Parallelism: runs on multiple processors, hopefully
making it run faster. No other affect on program
outcome.

Friday, May 25, 12

Parallel collections
Problem: validate ~435,000 BGP announcements
against ~2,000 route origin authorizations

val result = announcements.map { announcement =>
 val matching = roas.findMatching(announcement.prefix)
 val (validates, invalidates) =
 matching.partition { roa => roa.isValid(announcement) }

 ValidatedAnnouncement(
 announcement, validates, invalidates)
}

Friday, May 25, 12

Parallel collections
Problem: validate ~435,000 BGP announcements
against ~2,000 route origin authorizations

val result = announcements.par.map { announcement =>
 val matching = roas.findMatching(announcement.prefix)
 val (validates, invalidates) =
 matching.partition { roa => roa.isValid(announcement) }

 ValidatedAnnouncement(
 announcement, validates, invalidates)
}.seq

Friday, May 25, 12

Parallel collections

• Sequential: 	

 ~1.4 seconds,
Parallel:	

 	

 ~0.8 seconds (75% faster)

• Can be a quick win for CPU-bound tasks

• Deterministic in absence of side-effects, only
the performance changes (same, better, worse)

• Often preferable to implementing a smarter
algorithm

• We also use this in UI table filtering

Friday, May 25, 12

Actors

Friday, May 25, 12

Actors

• Aren’t Akka and Scala all about actors?

• Planning to try actors to replace Validator-to-
Router communication implementation

• Currently uses Netty ChannelHandlers

• Low-level, hard to test, hard to get right

• Replace with Akka I/O manager and one
actor per router?

Friday, May 25, 12

Conclusion

Friday, May 25, 12

• Immutability is golden and so are side-effect free
functions

• Concurrency is (still) hard

• But parallelism much easier, almost free

• No single solution to the concurrency problem,
use the right tool for the problem at hand

• Scala (like Clojure and Haskell) provides lots of
tools that mostly integrate well

Conclusion

Friday, May 25, 12

... and not covered

• Basic Java concurrency (synchronized, notify,
wait), java.util.concurrent

• The LMAX Disruptor and the single writer
principle

• Dataflow concurrency

• Reactive programming

• Events, event bus, event loops

• Etc.

Friday, May 25, 12

Questions?
erik rozendaal

Friday, May 25, 12

