
Riak Use Cases:
Dissecting the Solutions to
Hard Problems
Andy Gross <@argv0>
Chief Architect
Basho Technologies

Thursday, May 24, 12

Riak
Dynamo-inspired key value database

with full text search, mapreduce, secondary indices,
link traversal, commit hooks, HTTP and binary
interfaces, pluggable backends

Written in Erlang and C/C++

Open Source, Apache 2 licensed

Enterprise features (multi-datacenter replication) and
support available from Basho

Thursday, May 24, 12

Choosing a NoSQL
Database

At small scale, everything works.

NoSQL DBs trade off traditional features to better
support new and emerging use cases

Knowledge of the underlying system is essential

A lot of NoSQL marketing is bullshit

Thursday, May 24, 12

Tradeoffs

If you’re evaluating Mongo vs. Riak, or CouchDB vs.
Cassandra, you don’t understand your problem

By choosing Riak, you’ve already made tradeoffs:

Consistency for availability in failure scenarios

A rich data/query model for a simple, scalable one

A mature technology for a young one

Thursday, May 24, 12

Distributed Systems:
Desirable Properties

Highly Available

Low Latency

Scalable

Fault Tolerant

Ops-Friendly

Predictable

Thursday, May 24, 12

1000s of Deployments

Thursday, May 24, 12

User/Metadata Store
Comcast

User profile storage for xfinityTV mobile
application

Storage of metadata on content providers, and
content licensing info

Strict latency requirements

Thursday, May 24, 12

Notification Service
Yammer

Thursday, May 24, 12

Session Store
Mochi Media

First Basho Customer (late 2009)

Every hit to a Mochi web property = 1 read,
maybe one write to Riak

Unavailability, high latency = lost ad revenue

Thursday, May 24, 12

Document Store
Github Pages / Git.io

Riak as a web server for Github Pages

Webmachine is an awesome HTTP server!

Git.io URL shortener

Thursday, May 24, 12

Walkie Talkie
Voxer

Thursday, May 24, 12

Voxer - Initial Stats
11 Riak Nodes

~500GB dataset

~20k peak concurrent users

~4MM daily requests

Then something happened...

Thursday, May 24, 12

Thursday, May 24, 12

Voxer - Current Stats

> 100 nodes

~1TB data incoming / day

> 200k concurrent users

> 2 billion requests / day

Grew from 11 to 80 nodes Dec - Jan

Thursday, May 24, 12

Distributed Systems:
Desirable Properties

High Availability

Low Latency

Horizontal Scalability

Fault Tolerance

Ops-Friendliness

Predictability

Thursday, May 24, 12

High Availability

Failure to accept a read/write results in:

lost revenue

lost users

Availability and latency are intertwined

Thursday, May 24, 12

Low Latency

Sometimes late answer is useless or wrong

Users perceive slow sites as unavailable

SLA violations

SOA approaches magnify SLA failures

Thursday, May 24, 12

SOA

Who cares about latency?

Thursday, May 24, 12

Who cares about latency?

Sometimes high latency looks like an outage to the end user.

Thursday, May 24, 12

Fault Tolerance

Everything fails

Especially in the cloud

When a host/disk/network fails, what is the impact on

Availability

Latency

Operations staff

Thursday, May 24, 12

Predictability

“It’s a piece of plumbing; it has never been
a root cause of any of our problems.”

Coda Hale, Yammer

Thursday, May 24, 12

Operational Costs
Sound familiar?

“we chose a bad shard key...”

“the master node went down”

“the failover script did not run as expected...”

“the root cause was traced to a configuration error...”

Staying up all night fighting your database does
not make you a hero.

Thursday, May 24, 12

Consistency, Availability,
Latency

Thursday, May 24, 12

CAP

The fundamental, most-discussed tradeoff

When a network partition (message loss) occurs, laws
of physics make you choose:

Consistency OR

Availability

No system can “beat the CAP theorem”

Thursday, May 24, 12

Data Distribution

Thursday, May 24, 12

Location of data is determined based on a hash of the
key

Provides even distribution of storage and query load

Trades off advantages gained from locality

range queries

aggregates

Thursday, May 24, 12

Consistent Hashing

Thursday, May 24, 12

Virtual Nodes

Unit of addressing, concurrency in Riak

Each host manages many vnodes

Riak *could* manage all host-local storage as a unit
and gain efficiency, but would lose

simplicity in cluster resizing

failure isolation

Thursday, May 24, 12

Append-Only Stores,
Bitcask

Thursday, May 24, 12

Append-Only Stores

All writes are appends to a file

This provides crash-safety, fast writes

Tradeoff: must periodically compact/merge files to
reclaim space

Causes periodic pauses while compaction occurs
that must be masked/mitigated

Thursday, May 24, 12

Bitcask

After the append completes, an in-memory structure called a ”keydir” is updated. A keydir is simply a hash
table that maps every key in a Bitcask to a fixed-size structure giving the file, offset, and size of the most recently
written entry for that key.

When a write occurs, the keydir is atomically updated with the location of the newest data. The old data is
still present on disk, but any new reads will use the latest version available in the keydir. As we’ll see later, the
merge process will eventually remove the old value.

Reading a value is simple, and doesn’t ever require more than a single disk seek. We look up the key in our
keydir, and from there we read the data using the file id, position, and size that are returned from that lookup. In
many cases, the operating system’s filesystem read-ahead cache makes this a much faster operation than would
be otherwise expected.

3 2010/4/27

Tradeoff: Index must fit in memory

Low Latency: All reads = hash lookup + 1 seek
All writes = append to file

Thursday, May 24, 12

Thursday, May 24, 12

Handoff and Rebalancing

When nodes are added to a cluster, data must be
rebalanced

Rebalancing causes disk, network load

Tradeoff: speed of convergence vs. effects on cluster
performance

Thursday, May 24, 12

Vector Clocks

Provide happened-before relationship between events

Riak tags each object with vector clock

Tradeoff: space, speed, complexity for safety

Thursday, May 24, 12

Gossip Protocol

Nodes “gossip” their view of cluster state to each other

Tradeoffs:

atomic modifications of cluster state for no SPOF

complexity for fault tolerance

Thursday, May 24, 12

Sane Defaults

Speed vs. Safety

Riak ships with N=3, R=W=2

Bad for microbenchmarks, good for production
use, durability

Mongo ships with W=0

Good for benchmarks, horrible and insane for
durability, production use.

Thursday, May 24, 12

Erlang

Best language ever:

for distributed systems glue code

for safety, fault tolerance

Sometimes you want:

Destructive operations

Shared memory

Thursday, May 24, 12

NIFs to the rescue?

Use NIFs for speed, interfacing with native code, but:

You make the Erlang VM only as reliable as your C
code

NIFs block the scheduler

Thursday, May 24, 12

Conclusions
Over time, operational costs dominate

Predictability in:

Latency

Scalability

Failure scenarios

...is essential for managing operational costs

When choosing a database, raw throughput is often
the least important metric.

Thursday, May 24, 12

Thanks!

Visit us at http://www.basho.com

Check out our open source code at http://github.com/
basho

Follow us on Twitter: @basho

We’re hiring!

Thursday, May 24, 12

http://www.basho.com
http://www.basho.com
http://github.com/basho
http://github.com/basho
http://github.com/basho
http://github.com/basho

