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Exploring lightweight event sourcing

Goals

• The problem of data persistence

• Understand event sourcing

• Show why Scala is well-suited as 
implementation language
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Data must be durable
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But current 
applications are lossy
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• UPDATE invoice WHERE id = 1234 
    SET total_amount = 230

• What happened to the previous order 
amount? 

• Why was the order amount changed?

• Application behavior is not captured!
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N-Tier
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• Presentation, Service, and Data Layers

• Shared data model (“domain”)

• Heavy use of a single, global, mutable 
variable (“the database”)
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“Inexperienced programmers love magic because 
it saves their time. Experienced programmers hate 
magic because it wastes their time.” 
– @natpryce

10

Object-Relational 
Mapper
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Transactions

• Start transaction

• SELECT copy of data from database

• ORM hydrates objects to give program 
private copy of data

• ORM compares mutated program copy 
with initial copy to generate UPDATEs

• Commit transaction
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Performance Tuning

• Do you know the queries generated by 
your ORM? 

• What’s the query execution plan?

• Optimize reads versus writes
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“Domain” Model

• Presentation layer needs wide access to 
many parts

• Service layer is only interested in subset 
related to application behavior

• ORM tightly couples domain to relational 
model

• High coupling, low cohesion
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Is it any surprise that 
we’re struggling to build 
modular, maintainable 

applications?
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• Domain-Driven Design An approach to software development that suggests 
that (1) For most software projects, the primary focus should be on the 
domain and domain logic; and (2) Complex domain designs should be based 
on a model. 

• Domain Expert A member of a software project whose field is the domain 
of the application, rather than software development. Not just any user of 
the software, the domain expert has deep knowledge of the subject. 

• Ubiquitous Language A language structured around the domain model and 
used by all team members to connect all the activities of the team with the 
software. 
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Domain Driven Design

http://domaindrivendesign.org/freelinking/Domain-Driven%2520Design
http://domaindrivendesign.org/freelinking/Domain-Driven%2520Design
http://domaindrivendesign.org/freelinking/Domain%2520Expert
http://domaindrivendesign.org/freelinking/Domain%2520Expert
http://domaindrivendesign.org/freelinking/Ubiquitous%2520Language
http://domaindrivendesign.org/freelinking/Ubiquitous%2520Language
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Event Sourcing
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• All state changes are explicitly captured 
using domain events

• Capture the intent of the user and the 
related data

• Events represent the outcome of application 
behavior
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Source Control
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Source Control
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RCS

SCCS PVCS

CVS
Subversion

Darcs Git
Mercurial

BitKeeper
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Event 
Store

Draft Invoice 
Created

Recipient: "Erik"

Invoice Recipient 
Changed

Item: "Food"
Item amount: 9.95
Total amount: 9.95

Invoice Item 
Added

Only the events need 
to be stored on disk
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YAGNI?

• On the checkout page we’d like to promote 
products that customers previously 
removed from their shopping cart.

• Can you tell us how many people removed 
a product but bought it later anyway?

• ... over the past 5 years? 
... and how much time passed in-between?
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YAGNI?

• We have reports of a strange bug, but have 
not been able to isolate it. Could you look 
at the production data to find out what’s 
going on?

23



Exploring lightweight event sourcing

Is it worth it?

24



Exploring lightweight event sourcing

Is it worth it?

• Make the event sourcing implementation as 
simple as possible

24



Exploring lightweight event sourcing

Is it worth it?

• Make the event sourcing implementation as 
simple as possible

• ... while avoiding the complexities of 
databases, ORMs, etc.

24



Exploring lightweight event sourcing

Is it worth it?

• Make the event sourcing implementation as 
simple as possible

• ... while avoiding the complexities of 
databases, ORMs, etc.

• ... unless you want or need them :)
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Exploring lightweight event sourcing

Implementation
• Events for durability

• Keep current state in RAM 
(Memory Image)

• Scala case classes to 
define events and 
immutable data 
structures

• Independent components 
composed into a single 
application

25
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Simple functionality 
example

• “CRUD”: no domain logic, so no aggregate

• So we’ll persist events directly from the UI

• Useful to get started

• ... and even complex applications still 
contain simple functionality

26
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Controller

28

  post("/todo") {
    field("text", required) match {
      case Success(text)  =>
        commit(ToDoItemAdded(ToDoItem(UUID.randomUUID(), text)))
        redirect(url("/todo"))
      case Failure(error) => 
        new ToDoView(toDoItems, Some(error)),
    }
  }
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Memory Image
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case class ToDoItems (
    all          : Map[UUID, ToDoItem] = Map.empty,
    recentlyAdded: Vector[UUID]        = Vector.empty) {
  
  def apply(event: ToDoItemEvent) = event match {
    case ToDoItemAdded(item) => 
      copy(all + (item.id -> item), recentlyAdded :+ item.id)
    // [... handle other event types ...]
  }

  def mostRecent(count: Int) = recentlyAdded.takeRight(count).map(all).reverse
}
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View
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Event 
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<table class="zebra-striped">
  <thead><tr><th>To-Do</th></tr></thead>
  <tbody>{ 
    for (item <- toDoItems.mostRecent(20)) yield {
      <tr><td>{ item.text }</td></tr> 
    }
  }</tbody>
</table>
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Domain Code

32

sealed trait InvoiceEvent
case class InvoiceCreated() extends InvoiceEvent
case class InvoiceRecipientChanged(recipient: String) extends InvoiceEvent
case class InvoiceItemAdded(item: InvoiceItem, totalAmount: BigDecimal) extends InvoiceEvent
case class InvoiceSent(sentOn: LocalDate, paymentDueOn: LocalDate) extends InvoiceEvent
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Domain Code

33

case class DraftInvoice(
  recipient: Option[String] = None,
  nextItemId: Int = 1,
  items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

 
  def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] = ...

  // [... other domain logic ...]

 

  private def itemAdded = when[InvoiceItemAdded] { event =>
    // ...
  }

}
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Domain Code
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case class DraftInvoice(
  recipient: Option[String] = None,
  nextItemId: Int = 1,
  items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

 
  def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] = ...

  // [... other domain logic ...]

 

  private def itemAdded = when[InvoiceItemAdded] { event =>
    // ...
  }

}

The “Brains”

The “Muscle”
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Domain Code

34

case class DraftInvoice(
  recipient: Option[String] = None,
  nextItemId: Int = 1,
  items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

  // ...

  def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] =
    itemAdded(InvoiceItemAdded(InvoiceItem(nextItemId, description, amount), totalAmount + amount))

  private def totalAmount = items.values.map(_.amount).sum

  private def readyToSend_? = recipient.isDefined && items.nonEmpty

  // ...

  private def itemAdded = when[InvoiceItemAdded] { event =>
    copy(nextItemId = nextItemId + 1, items = items + (event.item.id -> event.item))
  }

}
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Domain Code

35

case class DraftInvoice(
  recipient: Option[String] = None,
  nextItemId: Int = 1,
  items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

  ...

  /** Reload from history. */
  protected[this] def applyEvent = recipientChanged orElse itemAdded orElse sent

  ...
}
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Validate input and 
generate event

HTTP POST
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Event Store
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Event Store

38

• Stores sequence of events

• Dispatches events when successfully 
committed

• Replays events on startup

• It’s your application’s transaction log
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Writing Events to Disk

39

  private class JournalFileWriter(file: File, var sequence: Long) {
    private val checksum = new CRC32()
    private val fileOutputStream = new FileOutputStream(file)
    private val dataOutputStream = new DataOutputStream(
      new CheckedOutputStream(
      new BufferedOutputStream(fileOutputStream), checksum))

    def write(commit: Array[Byte]) {
      sequence += 1
      checksum.reset()
      dataOutputStream.writeLong(sequence)
      dataOutputStream.writeInt(commit.size)
      dataOutputStream.write(commit)
      dataOutputStream.writeInt(checksum.getValue().toInt)
    }

    def sync(metadata: Boolean = false) {
      dataOutputStream.flush()
      fileOutputStream.getChannel().force(metadata)
    }
  }
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Example Application

• https://github.com/erikrozendaal/scala-
event-sourcing-example

• (soon) https://github.com/zilverline/lessdb-
example 

• Blog series coming soon at http://
blog.zilverline.com
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Implementation 
Limitations

• Single-threaded event store using disruptor pattern

• ~ 5.000 commits per second

• Number of events to replay on startup

• ~ 70.000 JSON serialized events/second

• ~ 200.000 protobuf serialized events/second

• Total number of objects to store in main memory

• JVM can run with large heaps (tens of gigabytes)
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But ready to scale

• Advanced event store implementations support 
SQL, MongoDB, Amazon SimpleDB, etc.

• Use persisted view model for high volume objects 
(fixes startup time and memory usage)

• Easy partitioning of aggregates (consistency 
boundary with unique identifier)

• Load aggregates on-demand, use snapshotting
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Conclusion

• Fully capture historical information

• Independent components where each part 
of the application can use its own data 
model

• Easier to fully understand compared to 
traditional ORM based approach

• Need to learn “Event-Driven” thinking
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