Exploring Lightweight
Event Sourcing

Erik Rozendaal <erozendaal@zilverline.com>
@erikrozendaal

j : GOTO Amsterdam 201 |

zilverline

mailto:erozendaal@zilverline.com
mailto:erozendaal@zilverline.com

Goals

® The problem of data persistence
® Understand event sourcing

® Show why Scala is well-suited as
implementation language

zilverline

Exploring lightweight event sourcing

Problem

zilverline . . .
Exploring lightweight event sourcing

Data must be durable

Exploring lightweight event sourcing

zilverline

But current
applications are lossy

zilverline . . .
Exploring lightweight event sourcing

Lossy!

zilverline . . .
Exploring lightweight event sourcing

Lossy!

e UPDATE invoice WHERE id = 1234
SET total amount = 230

@

zilverline . . .
Exploring lightweight event sourcing

Lossy!

e UPDATE invoice WHERE id = 1234
SET total amount = 230

® VWhat happened to the previous order
amount!?

zilverline . . .
Exploring lightweight event sourcing

Lossy!

e UPDATE invoice WHERE id = 1234
SET total amount = 230

® VWhat happened to the previous order
amount!?

® Why was the order amount changed!?

zilverline . . .
Exploring lightweight event sourcing

Lossy!

e UPDATE invoice WHERE id = 1234
SET total amount = 230

® VWhat happened to the previous order
amount!?

® Why was the order amount changed!?

® Application behavior is not captured!

@

zilverline

Exploring lightweight event sourcing

Behavior!

zilverline . . .
Exploring lightweight event sourcing

Behavior!

Status:

"Draft"

Invoice Total:
0.00

zilverline . . .
Exploring lightweight event sourcing

Behavior!

Status:
"Draft"

Invoice

zilverline

Recipient:
IIErikll

Total:
0.00

Exploring lightweight event sourcing

Behavior!

Status: Recipient:
"Draft" "Erik"
Invoice Total:
9.95
Invoice ltem item:
"Food"
e ——

Amount:
9.95

zilverline . . .
Exploring lightweight event sourcing

It’s just data mutation

Status: Recipient:
"Draft" "Erik"

Invoice Total:

9.95

Invoice ltem item:
IIFOOdH

Amount:
9.95

zilverline . . .
Exploring lightweight event sourcing

It’s just data mutation

Status: Recipient:

"Draft" "Erik"

Invoice Total:
9.95

Invoice ltem Item:
"Food"
Amount:
9.95

zilverline . . .
Exploring lightweight event sourcing

N-Tier

zilverline . . .
Exploring lightweight event sourcing

N-Tier

® Presentation, Service, and Data Layers

zilverline . . .
Exploring lightweight event sourcing

N-Tier

® Presentation, Service, and Data Layers

® Shared data model (“domain™)

@

zilverline . . .
Exploring lightweight event sourcing

N-Tier

® Presentation, Service, and Data Layers
® Shared data model (“domain™)

® Heavy use of a single, global, mutable
variable (“‘the database™)

zilverline . . .
Exploring lightweight event sourcing

Object-Relational
Mapper

“Inexperienced programmers love magic because
it saves their time. Experienced programmers hate

magic because it wastes their time.”
— @natpryce

@

zilverline - . .
Exploring lightweight event sourcing

10

@

zilverline

Transactions

Start transaction
SELECT copy of data from database

ORM hydrates objects to give program
private copy of data

ORM compares mutated program copy
with initial copy to generate UPDATEs

Commit transaction

Exploring lightweight event sourcing

Performance Tuning

zilverline

Performance Tuning

® Do you know the queries generated by
your ORM?

Exploring lightweight event sourcing

12

@

zilverline

Performance Tuning

® Do you know the queries generated by
your ORM?

® What'’s the query execution plan!?

Exploring lightweight event sourcing

12

@

zilverline

Performance Tuning

® Do you know the queries generated by
your ORM?

® What'’s the query execution plan!?

® Optimize reads versus writes

Exploring lightweight event sourcing

12

@

zilverline

“Domain’ Model

Exploring lightweight event sourcing

|3

@

zilverline

“Domain’ Model

® Presentation layer needs wide access to
many parts

Exploring lightweight event sourcing

|3

@

zilverline

“Domain’ Model

® Presentation layer needs wide access to
many parts

® Service layer is only interested in subset
related to application behavior

Exploring lightweight event sourcing

|3

@

zilverline

“Domain’ Model

® Presentation layer needs wide access to
many parts

® Service layer is only interested in subset
related to application behavior

® ORM tightly couples domain to relational
model

Exploring lightweight event sourcing

|3

zilverline

“Domain’ Model

Presentation layer needs wide access to
many parts

Service layer is only interested in subset
related to application behavior

ORM tightly couples domain to relational
model

High coupling, low cohesion

Exploring lightweight event sourcing

|3

Domain Model

Status: Recipient:
"Draft" "Erik"
Invoice Total: 9.95

Invoice Item

ltem:
"Food"

Amount:
9.95

Model

zilverline . . .
Exploring lightweight event sourcing

Domain Model

Recipient:

Status:
"Draft" "Erik"
— Invoice Total: 9.95

Invoice Item Item:
"Food"

Amount:
9.95
Model
T —

zilverline

Exploring lightweight event sourcing

Domain Model

i
| —
: ¢ Your Application Name

Status: Recipient:

"Draft" "Erik"
—p Invoice Total: 9.95

Invoice ltem Item:

"Food"
Amount:

9.95

Service Layer Model
T —

zilverline . . .
Exploring lightweight event sourcing

Domain Model

Status:
"Draft"

Recipient:
llErik"

> Invoice

ltem:

f invoice ftem

Service Layer

Model

zilverline

Exploring lightweight event sourcing

Total: 9.95

"Food"

Amount:
9.95

Hibernate

~

Database

e

Is it any surprise that
we're struggling to build
modular, maintainable
applications!?

zilverline - . .
Exploring lightweight event sourcing

|5

zilverline

Domain Driven Design

® Domain-Driven Design An approach to software development that suggests
that (1) For most software projects, the primary focus should be on the
domain and domain logic; and (2) Complex domain designs should be based
on a model.

® Domain Expert A member of a software project whose field is the domain
of the application, rather than software development. Not just any user of
the software, the domain expert has deep knowledge of the subject.

® Ubiquitous Language A language structured around the domain model and
used by all team members to connect all the activities of the team with the
software.

Exploring lightweight event sourcing

16

http://domaindrivendesign.org/freelinking/Domain-Driven%2520Design
http://domaindrivendesign.org/freelinking/Domain-Driven%2520Design
http://domaindrivendesign.org/freelinking/Domain%2520Expert
http://domaindrivendesign.org/freelinking/Domain%2520Expert
http://domaindrivendesign.org/freelinking/Ubiquitous%2520Language
http://domaindrivendesign.org/freelinking/Ubiquitous%2520Language

@

zilverline

Event Sourcing

® All state changes are explicitly captured
using domain events

® Capture the intent of the user and the
related data

® Events represent the outcome of application
behavior

Exploring lightweight event sourcing

|7

Source Control

<

zilverline

Darcs

Source Control

Subversion

CVS

RCS
Git

BitKeeper
SCCS

Exploring lightweight event sourcing

18

Domain Behavior

generate

Draft Invoice
Created

zilverline

Domain Behavior

Exploring lightweight event sourcing

19

Domain Behavior

generate

Draft Invoice
Created

apply

Status:
"Draft"

Invoice Total:
0.00

zilverline Exploring lightweight event sourcing 19

Domain Behavior

generate
Draft Invoice Invoice Recipient
Created Changed
Recipient: "Erik"
apply generate

Invoice Total:
0.00

zilverline . . .
Exploring lightweight event sourcing

Domain Behavior

generate

Draft Invoice
Created

Invoice Recipient
Changed

Recipient: "Erik"

apply generate apply

‘ Invoice

zilverline

Total:
0.00

‘ Invoice

Recipient:
IIErikll

Total:
0.00

Exploring lightweight event sourcing

19

generate

Draft Invoice
Created

Invoice Recipient
Changed

Recipient: "Erik"

Domain Behavior

Invoice ltem
Added

ltem: "Food"
ltem amount: 9.95
Total amount: 9.95

apply generate apply generate

zilverline

‘ Invoice

Total:
0.00

‘ Invoice

Recipient:
IIErikll

Total:
0.00

Exploring lightweight event sourcing

19

Domain Behavior

generate
Draft Invoice Invoice Recipient Invoice Item
Created Changed Added
Recipient: "Erik" ltem: "Food"
ltem amount: 9.95
Total amount: 9.95
apply generate apply generate apply
Recipient: Status: Recipient:
"Erik" "Draft" "Erik"

—

Invoice ltem

ltem:
"Food"

Invoice Total: Invoice Total: Invoice Total:
0.00 0.00 9.95

zilverline Exploring lightweight event sourcing 19

Only the events need
to be stored on disk

- 3

Event
Store

Draft Invoice Invoice Recipient Invoice ltem
Created Changed Added

Recipient: "Erik" ltem:"Food" = | eeeeeee
ltem amount: 9.95
Total amount: 9.95

zilverline . . .
Exploring lightweight event sourcing

@

zilverline

Reloading from history

Exploring lightweight event sourcing

21

Reloading from history

Draft Invoice
Created

apply

Status:
"Draft"

Invoice Total:
0.00

zilverline Exploring lightweight event sourcing 21

zilverline

Reloading from history

Invoice Recipient
Changed

Recipient: "Erik"

apply

Status: Recipient:
"Draft" "Erik"

Invoice Total:
0.00

Exploring lightweight event sourcing

21

zilverline

Reloading from history

Invoice ltem
Added

ltem: "Food"
ltem amount: 9.95
Total amount: 9.95

apply

Exploring lightweight event sourcing

Status: Recipient:
"Draft" "Erik"
Invoice Total:
9.95
Invoice ltem item:
"Food"

21

zilverline

Reloading from history

Exploring lightweight event sourcing

Status:
"Draft"

Invoice

—

Invoice ltem

Recipient:
IlErikll

Total:
9.95

ltem:

"Food"

21

zilverline

YAGNI?

Exploring lightweight event sourcing

22

zilverline

YAGNI?

® On the checkout page we'd like to promote
products that customers previously
removed from their shopping cart.

Exploring lightweight event sourcing

22

YAGNI?

® On the checkout page we'd like to promote
products that customers previously
removed from their shopping cart.

® Can you tell us how many people removed
a product but bought it later anyway?

@

zilverline

Exploring lightweight event sourcing

22

YAGNI?

® On the checkout page we'd like to promote
products that customers previously
removed from their shopping cart.

® Can you tell us how many people removed
a product but bought it later anyway?

® .. over the past 5 years!
...and how much time passed in-between?

@

zilverline

Exploring lightweight event sourcing

22

zilverline

YAGNI?

® We have reports of a strange bug, but have
not been able to isolate it. Could you look
at the production data to find out what’s
going on!

Exploring lightweight event sourcing

23

zilverline

Is it worth it!

Exploring lightweight event sourcing

24

@

zilverline

Is it worth it!

® Make the event sourcing implementation as
simple as possible

Exploring lightweight event sourcing

24

zilverline

Is it worth it!

® Make the event sourcing implementation as
simple as possible

® .. while avoiding the complexities of
databases, ORMs, etc.

Exploring lightweight event sourcing

24

@

zilverline

Is it worth it!

® Make the event sourcing implementation as
simple as possible

® .. while avoiding the complexities of
databases, ORMs, etc.

® ... unless you want or need them :)

Exploring lightweight event sourcing

24

zilverline

Impl

ementation

(Ho

1\ l'!‘

\ v\q

\5‘ ! 3

Exploring lightweight event sourcing

A

xl‘ ..
{1 T NI
d 7
'] : r
L 4

25

zilverline

Implementation

® Events for durability

> Lo IR
s A Vi

Exploring lightweight event sourcing

25

zilverline

Implementation

® Events for durability

® Keep current state in RAM
(Memory Image)

Exploring lightweight event sourcing

25

zilverline

Implementation

AL d '
W -'g’ ""1]
. e

AT
.
4

i i} //' :/‘ /; 4y ,:,

Events for durability /
'/

Keep current state in RAM
(Memory Image)

Scala case classes to
define events and
immutable data
structures

Exploring lightweight event sourcing 25

@

zilverline

Implementation

Events for durability

Keep current state in RAM
(Memory Image)

Scala case classes to
define events and
immutable data
structures

Independent components
composed into a single
application

Exploring lightweight event sourcing

25

@

zilverline

Simple functionality
example

“CRUD”: no domain logic, so no aggregate
So we'll persist events directly from the Ul
Useful to get started

...and even complex applications still
contain simple functionality

Exploring lightweight event sourcing

26

zilverline

“CRUD"

Exploring lightweight event sourcing

27

“CRUD"

Create/Update/Delete

Date range May 1, 2011 12:00am |to| May 8, 2011 11:59pm

Textarea

List of options (8 Option one is this and that—be sure to include why it's great
_) Option two can is something else and selecting it will deselect options 1

cas

zilverline Exploring lightweight event sourcing 27

“CRUD"

Create/Update/Delete

Date range May 1, 2011 12:00am |to| May 8, 2011 11:59pm

Textarea

HTTP POST Validate input and

List of options (&) Option one is this and that—be sure to include why it's great g e n e rate eve nt

_) Option two can is something else and selecting it will deselect options 1

cas

zilverline Exploring lightweight event sourcing 27

Create/Update/Delete

Date range May 1, 2011 12:00am |to| May 8, 2011 11:59pm

Textarea

List of options (8 Option one is this and that—be sure to include why it's great
_) Option two can is something else and selecting it will deselect options 1

cas

“CRUD"

HTTP POST

Validate input and

zilverline

Save Event

Event

generate event

Exploring lightweight event sourcing

Store

Create/Update/Delete

Date range May 1, 2011 12:00am |to| May 8, 2011 11:59pm

Textarea

List of options (8 Option one is this and that—be sure to include why it's great
_) Option two can is something else and selecting it will deselect options 1

Save changes Cancel

“CRUD"

HTTP POST

Validate input and

zilverline

Save Event

Event

generate event

Exploring lightweight event sourcing

Store
v

Apply Event

Recipient:
I|Erikll

Status:
"Draft"
Invoice Total: 9.95

Invoice ltem

ltem:
"Food"

Amount:
9.95

Presentation Model

Create/Update/Delete

Date range May 1, 2011 12:00am |to| May 8, 2011 11:59pm

Textarea

List of options (8 Option one is this and that—be sure to include why it's great
_) Option two can is something else and selecting it will deselect options 1

Save changes Cancel

“CRUD"

HTTP POST

Validate input and

zilverline

Save Event

Event

generate event

Query

Store
v

Apply Event

Recipient:
I|Erikll

Status:
"Draft"

Render View

Exploring lightweight event sourcing

Invoice ltem

ltem:
"Food"

Invoice Total: 9.95

Amount:
9.95

Presentation Model

“CR D”

Create/Update/Delete

Date range May 1, 2011 12:00am |to| May 8, 2011 11:59pm

—
Textarea v
HTTP POST . . Save Event
Validate input and Event
petepters wgi:z: :: icsa:\h:: ::nz:i‘n_gbeTsseuari(joszzlcu::g\;h:i;lt:egsrzlas:ct options 1 g e n e rate eve nt Sto re
e —————
L v
Apply Event
Read Recipient:
"Draft" "Erik"
First Name Last Name Language
Invoice
1 Some One English HTTP GET Query
Render View |
2 Joe Sixpack English) Item:
Invoice ltem
3 Stu Dent Code

zilverline . . .
Exploring lightweight event sourcing

Amount:
9.95

Presentation Model

27

PPPPPPP

C O n t I O I I e I b Fsthame Lsthame Lonuage
T sme One Exgien
P Exgisn

Sipeck

Render View

post("/todo") {
field("text", required) match {
case Success(text) =>
commit(ToDoItemAdded(ToDoItem(UUID.randomUUID(), text)))
redirect(url("/todo"))
case Failure(error) =>
new ToDoView(toDoItems, Some(error)),

zilverline Exploring lightweight event sourcing 28

Memory Image

ngngngng

Sipeck

case class ToDolItems (

all : Map[UUID, ToDoItem] = Map.empty,
recentlyAdded: Vector[UUID] = Vector.empty) {

def apply(event: ToDoItemEvent) = event match {
case ToDoItemAdded(item) =>

copy(all + (item.1d -> 1tem), recentlyAdded :+ item.1id)

// [... handle other event types ...]
¥

def mostRecent(count: Int) = recentlyAdded.takeRight(count).map(all).reverse

h

zilverline . . .
Exploring lightweight event sourcing

29

et i ol s |
V I e ' ' b Fisthame LastName Language
T sme [

Sopack Exgisn

Render View

<table class="zebra-striped">
<thead><tr><th>To-Do</th></tr></thead>
<tbody>{
for (item <- toDoItems.mostRecent(20)) yield {
<tr><td>{ 1tem.text }</td></tr>
Iy
}</tbody>
</table>

zilverline Exploring lightweight event sourcing 30

Domain Driven Design

Date range May 1, 2011 12:00am | to | May 8, 2011 11:59pm
N
Textarea v
HTTP POST . . Save Event
Validate input and Event
e et e s et generate event Store

Save changes Cancel V

Apply Event

Read

Recipient:
I|Erikll

Status:
"Draft"
First Name Last Name Language
Invoice Total: 9.95
1 Some One English HTTP GET Query

Render View |

2 Joe Sixpack English Item:
Invoice ltem " "

Food

—_—_——
3 Stu Dent Code

Amount:

9.95

zilverline . . .
Exploring lightweight event sourcing

Domain Driven Design

Save Event

Event

Domain Model
Receive
Order
eeeee
for each line tem
* der €
outstanding
Command - P s o
Order Failext] Payment for each chosen
order item
[succeded)
[stock assigned to all
line tems and —
payment authorized]
Dispatch
Order

HTTP POST . .
Validate input and
generate event
Read

First Name Last Name Language

1 Some One English

2 Joe Sixpack English

3 Stu Dent Code

zilverline

Query

Store

‘_/

Apply Event

Recipient:
I|Erikll

Status:
"Draft"

Invoice

Render View

Exploring lightweight event sourcing

Invoice ltem

ltem:
"Food"

Total: 9.95

Amount:
9.95

zilverline

Domain Code

sealed trait InvoiceEvent

case
case
case
case

class InvoiceCreated() extends InvoiceEvent
class InvoiceRecipientChanged(recipient: String) extends InvoiceEvent

class InvoiceltemAdded(item: Invoiceltem, totalAmount: BigDecimal) extends InvoiceEvent
class InvoiceSent(sentOn: LocalDate, paymentDueOn: LocalDate) extends InvoiceEvent

Exploring lightweight event sourcing

32

Domain Code

case class DraftInvoice(
recipient: Option[String] = None,
nextItemId: Int = 1,
i1tems: Map[Int, Invoiceltem] = Map.empty) extends Invoice {

def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] = ...

// [... other domain logic ...]

private def itemAdded = when[InvoiceltemAdded] { event =>
// ...

}

zilverline . . .
Exploring lightweight event sourcing

33

Domain Code

case class DraftInvoice(

recipient: Option[String] = None,
nextItemId: Int = 1,
i1tems: Map[Int, Invoiceltem] = Map.empty) extends Invoice {

def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] = ...

// [... other domain logic ...]

zilverline

private def itemAdded = when[InvoiceltemAdded] { event =>
// ...

}

Exploring lightweight event sourcing

33

Domain Code

case class DraftInvoice(

recipient: Option[String] = None,
nextItemId: Int = 1,
i1tems: Map[Int, Invoiceltem] = Map.empty) extends Invoice {

def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] = ...

// [... other domain logic ...]

private def itemAdded = when[InvoiceltemAdded] { event =>
// ...

}

zilverline

Exploring lightweight event sourcing

33

Domain Code

case class DraftInvoice(
recipient: Option[String] = None,
nextItemId: Int = 1,
items: Map[Int, Invoiceltem] = Map.empty) extends Invoice {

/7.

def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] =
1temAdded(InvoiceIltemAdded(Invoiceltem(nextItemId, description, amount), totalAmount + amount))

private def totalAmount = items.values.map(_.amount).sum
private def readyToSend_? = recipient.isDefined && items.nonEmpty
/...

private def itemAdded = when[InvoiceltemAdded] { event =>
copy(nextItemId = nextItemId + 1, items = items + (event.item.id -> event.item))

}

zilverline . . .
Exploring lightweight event sourcing

34

Domain Code

case class DraftInvoice(
recipient: Option[String] = None,
nextItemId: Int = 1,
items: Map[Int, Invoiceltem] = Map.empty) extends Invoice {

/** Reload from history. */
protected[this] def applyEvent = recipientChanged orElse itemAdded orElse sent

zilverline . . .
Exploring lightweight event sourcing

35

Cooperating Users

Create/Update/Delete

Date range May 1, 2011 12:00am |to| May 8, 2011 11:59pm
/\
Textarea v
. HTTP POST . , Save Event
Validate input and Event
e e e ot generate event Store
T ——

Save changes Cancel \ /

Apply Event

Read

Recipient:
I|Erikll

Status:
"Draft"
First Name Last Name Language
Invoice Total: 9.95
1 Some One English HTTP GET Query

Render View |

2 Joe Sixpack English Item:
Invoice ltem " "

Food

e ————————
3 Stu Dent Code

Amount:

9.95

zilverline . . .
Exploring lightweight event sourcing

36

ooperating Users

Submit Event

Save Event

Event

Conflict Resolution

Conflicting Events

HTTP GET

HTTP POST . .
Validate input and
generate event
Read

First Name Last Name Language

1 Some One English

2 Joe Sixpack English

3 Stu Dent Code

zilverline

Query

Store

‘_/

Apply Event

Status: Recipient:
"Draft" "Erik"

Render View

Exploring lightweight event sourcing

ltem:

Invoice ltem " "
Food

Invoice Total: 9.95

Amount:
9.95

36

ooperating Users

Submit Event

Save Event

Event

Conflict Resolution

Conflicting Events

HTTP GET

Checkout revision 23

HTTP POST . .
Validate input and
generate event
Read

First Name Last Name Language

1 Some One English

2 Joe Sixpack English

3 Stu Dent Code

zilverline

Query

Store

‘_/

Apply Event

Status: Recipient:
"Draft" "Erik"

Render View

Exploring lightweight event sourcing

ltem:

Invoice ltem " "
Food

Invoice Total: 9.95

Amount:
9.95

36

Cooperating Users

Submit events
based on revision 23

Submit Event

Save Event

Event

Conflict Resolution

Checkout revision 23

HTTP POST . .
Validate input and
generate event
Conflicting Events
Read

First Name Last Name Language

1 Some One English HTTP GET

2 Joe Sixpack English

3 Stu Dent Code

zilverline

Query

Store

‘_/

Apply Event

Status: Recipient:
"Draft" "Erik"

Render View

Exploring lightweight event sourcing

ltem:

Invoice ltem " "
Food

Invoice Total: 9.95

Amount:
9.95

36

HTTP POST

Cooperating Users

Submit events
based on revision 23

Submit Event

Compare submitted events

with intermediate
events baed on
current revision

Validate input and

First Name

1 Some

generate event

Save Event

Event

Conflict Resolution

Conflicting Events

Read

Last Name Language

One

English HTTP GET

Checkout revision 23

Sixpack English

Dent

Code

zilverline

Query

Store

\r/

Apply Event

Status: Recipient:
"Draft" "Erik"

Render View

Exploring lightweight event sourcing

ltem:

Invoice ltem " "
Food

Invoice Total: 9.95

Amount:
9.95

36

zilverline

Events

Event Store

e

Status: Recipient:
"Draft" "Erik"

Invoice Total: 9.95

Invoice ltem

ltem:
"Food"

06

Amount:
9.95

Presentation Model
T ——

Exploring lightweight event sourcing

37

Events

Event Store

Push

Status: Recipient:
"Draft" "Erik"

Invoice Total: 9.95

Invoice ltem

ltem:
"Food"

06

Amount:
9.95

Presentation Model
T ——

zilverline . . .
Exploring lightweight event sourcing

Events

Event Store

zilverline

Push /j
Status: Recipient:
"Draft" "Erik"

Invoice Total: 9.95

Invoice ltem

ltem:
"Food"

06

Amount:
9.95

Presentation Model
S ——

Exploring lightweight event sourcing

37

Events

Event Store

Push

Status: Recipient:
"Draft" "Erik"

Invoice Total: 9.95

I
Invoice ltem "::tsgnd:" RDBMS

06
|

Amount:
9.95 \ ’
Presentation Model

zilverline . . .
Exploring lightweight event sourcing

37

Events

Event Store

Push

Status: Recipient:
"Draft" "Erik"

Invoice
w
I
Invoice ltem "Item:"
Food Solr/ Neo4d /
HBase/ ...
Amount:

9.95
Presentation Model p

zilverline . . .
Exploring lightweight event sourcing

Events

Event Store

System
Integration

Push

Order Fullfillment
Payment Provider
Legacy System

Status: Recipient:
"Draft" "Erik"

Invoice
w
I
Invoice ltem "Item:"
Food Solr/ Neo4d /
HBase/ ...
Amount:

9.95
Presentation Model p

zilverline . . .
Exploring lightweight event sourcing

Events

/\
~ A fj
: v
Event Store Replica
Push System
Integration
Order Fullfillment

Payment Provider
Legacy System

Status: Recipient:
"Draft" "Erik"

Invoice
w
I
Invoice ltem "Item:"
Food Solr/ Neo4d /
HBase/ ...
Amount:

9.95
Presentation Model p

zilverline . . .
Exploring lightweight event sourcing

Events

@ o
g\g \ @

Event Store Replica
Push System
Integration
Order Fullfillment

Payment Provider
Legacy System

Status: Recipient:
"Draft" "Erik"

Invoice
w
I
Invoice ltem "Item:"
Food Solr/ Neo4d /
HBase/ ...
Amount:

9.95
Presentation Model p

zilverline . . .
Exploring lightweight event sourcing

Push

Q| ©

Events

zilverline

Auditors

£

Certificate

Event Store

K= = 9

—

Status:
"Draft"
Invoice

Invoice ltem

Presentation Model

06

Recipient:
"Erik"

Total: 9.95

ltem:
"Food"

Amount:
9.95

Replica

System
Integration

~

Solr/ Neod4J /
HBase/ ...

p

Exploring lightweight event sourcing

Order Fullfillment
Payment Provider
Legacy System

37

@

zilverline

Event Store

Stores sequence of events

Dispatches events when successfully
committed

Replays events on startup

It’s your application’s transaction log

Exploring lightweight event sourcing

38

zilverline

Writing Events to Disk

private class JournalFileWriter(file: File, var sequence: Long) {
private val checksum = new CRC32()
private val fileOutputStream = new FileOutputStream(file)

private val dataOutputStream = new DataOutputStream(
new CheckedOutputStream(

new BufferedOutputStream(fileOutputStream), checksum))

def write(commit: Array[Byte]) {
sequence += 1
checksum.reset()
dataOutputStream.writelLong(sequence)
dataOutputStream.writeInt(commit.size)
dataOutputStream.write(commit)

dataOutputStream.writeInt(checksum.getValue().tolnt)
¥

def sync(metadata: Boolean = false) {
dataOutputStream.flush()
fileOutputStream.getChannel (). force(metadata)

Exploring lightweight event sourcing 39

@

zilverline

Example Application

® https://github.com/erikrozendaal/scala-
event-sourcing-example

® (soon) https://github.com/zilverline/lessdb-

example

® Blog series coming soon at http://
blog.zilverline.com

Exploring lightweight event sourcing

40

https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/zilverline/lessdb-example
https://github.com/zilverline/lessdb-example
https://github.com/zilverline/lessdb-example
https://github.com/zilverline/lessdb-example
http://blog.zilverline.com
http://blog.zilverline.com
http://blog.zilverline.com
http://blog.zilverline.com

@

zilverline

Implementation
Limitations

® Single-threaded event store using disruptor pattern
® ~ 5.000 commits per second

® Number of events to replay on startup " "~
® ~ 70.000 JSON serialized events/second “
® ~ 200.000 protobuf serialized events/second

® Total number of objects to store in main memory

® |VM can run with large heaps (tens of gigabytes)

Exploring lightweight event sourcing

41

@

zilverline

But ready to scale

Advanced event store implementations support
SQL, MongoDB, Amazon SimpleDB, etc.

Use persisted view model for high volume objects
(fixes startup time and memory usage)

Easy partitioning of aggregates (consistency
boundary with unique identifier)

Load aggregates on-demand, use snapshotting

Exploring lightweight event sourcing

42

) g

@

zilverline

Conclusion

® Fully capture historical information

® |hdependent components where each part

of the application can use its own data
mode]

® FEasier to fully understand compared to

traditional ORM based approach

® Need to learn “Event-Driven” thinking

Exploring lightweight event sourcing

43

Thanks!

@

zilverline

References

Example code https://github.com/erikrozendaal/scala-event-sourcing-example

CQRS http://cgrsinfo.com/

Greg Young, “Unshackle Your Domain™
http://www.infog.com/presentations/greg-young-unshackle-qcon08

Pat Helland, “Life Beyond Distributed Transactions: An Apostate's Opinion”

http://www.ics.uci.edu/~cs223/papers/cidr0/p|5.pdf

Erik Rozendaal,""Towards an immutable domain model” http://
blog.zilverline.com/201 1/02/10/towards-an-immutable-domain-model-

monads-part-5/

Martin Fowler,""Memory Image”, http://martinfowler.com/bliki/
Memorylmage.html

Martin Fowler,""The LMAX Architecture”, http://martinfowler.com/articles/
Imax.html

Exploring lightweight event sourcing

45

https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/erikrozendaal/scala-event-sourcing-example
http://cqrsinfo.com
http://cqrsinfo.com
http://www.infoq.com/presentations/greg-young-unshackle-qcon08
http://www.infoq.com/presentations/greg-young-unshackle-qcon08
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/articles/lmax.html
http://martinfowler.com/articles/lmax.html
http://martinfowler.com/articles/lmax.html
http://martinfowler.com/articles/lmax.html

