
Exploring Lightweight
Event Sourcing

Erik Rozendaal <erozendaal@zilverline.com>
@erikrozendaal

GOTO Amsterdam 2011

mailto:erozendaal@zilverline.com
mailto:erozendaal@zilverline.com

Exploring lightweight event sourcing

Goals

• The problem of data persistence

• Understand event sourcing

• Show why Scala is well-suited as
implementation language

2

Exploring lightweight event sourcing

Problem

3

Exploring lightweight event sourcing

Data must be durable

4

Exploring lightweight event sourcing

But current
applications are lossy

5

Exploring lightweight event sourcing 6

Lossy?

Exploring lightweight event sourcing

• UPDATE invoice WHERE id = 1234
 SET total_amount = 230

6

Lossy?

Exploring lightweight event sourcing

• UPDATE invoice WHERE id = 1234
 SET total_amount = 230

• What happened to the previous order
amount?

6

Lossy?

Exploring lightweight event sourcing

• UPDATE invoice WHERE id = 1234
 SET total_amount = 230

• What happened to the previous order
amount?

• Why was the order amount changed?

6

Lossy?

Exploring lightweight event sourcing

• UPDATE invoice WHERE id = 1234
 SET total_amount = 230

• What happened to the previous order
amount?

• Why was the order amount changed?

• Application behavior is not captured!

6

Lossy?

Exploring lightweight event sourcing

Behavior?

7

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Total:
0.00

Behavior?

7

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

Behavior?

7

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total:
9.95

Item:
"Food"

Amount:
9.95

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

Behavior?

7

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total:
9.95

Item:
"Food"

Amount:
9.95

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

It’s just data mutation

8

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total:
9.95

Item:
"Food"

Amount:
9.95

It’s just data mutation

8

Exploring lightweight event sourcing

N-Tier

9

Exploring lightweight event sourcing

N-Tier

9

• Presentation, Service, and Data Layers

Exploring lightweight event sourcing

N-Tier

9

• Presentation, Service, and Data Layers

• Shared data model (“domain”)

Exploring lightweight event sourcing

N-Tier

9

• Presentation, Service, and Data Layers

• Shared data model (“domain”)

• Heavy use of a single, global, mutable
variable (“the database”)

Exploring lightweight event sourcing

“Inexperienced programmers love magic because
it saves their time. Experienced programmers hate
magic because it wastes their time.”
– @natpryce

10

Object-Relational
Mapper

Exploring lightweight event sourcing

Transactions

• Start transaction

• SELECT copy of data from database

• ORM hydrates objects to give program
private copy of data

• ORM compares mutated program copy
with initial copy to generate UPDATEs

• Commit transaction

11

Exploring lightweight event sourcing

Performance Tuning

12

Exploring lightweight event sourcing

Performance Tuning

• Do you know the queries generated by
your ORM?

12

Exploring lightweight event sourcing

Performance Tuning

• Do you know the queries generated by
your ORM?

• What’s the query execution plan?

12

Exploring lightweight event sourcing

Performance Tuning

• Do you know the queries generated by
your ORM?

• What’s the query execution plan?

• Optimize reads versus writes

12

Exploring lightweight event sourcing

“Domain” Model

13

Exploring lightweight event sourcing

“Domain” Model

• Presentation layer needs wide access to
many parts

13

Exploring lightweight event sourcing

“Domain” Model

• Presentation layer needs wide access to
many parts

• Service layer is only interested in subset
related to application behavior

13

Exploring lightweight event sourcing

“Domain” Model

• Presentation layer needs wide access to
many parts

• Service layer is only interested in subset
related to application behavior

• ORM tightly couples domain to relational
model

13

Exploring lightweight event sourcing

“Domain” Model

• Presentation layer needs wide access to
many parts

• Service layer is only interested in subset
related to application behavior

• ORM tightly couples domain to relational
model

• High coupling, low cohesion

13

Exploring lightweight event sourcing

Domain Model

14

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Model

Exploring lightweight event sourcing

Domain Model

14

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Model

Exploring lightweight event sourcing

Domain Model

14

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

ModelService Layer

Exploring lightweight event sourcing

Domain Model

14

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

ModelService Layer

Database

Exploring lightweight event sourcing

Is it any surprise that
we’re struggling to build
modular, maintainable

applications?

15

Exploring lightweight event sourcing

• Domain-Driven Design An approach to software development that suggests
that (1) For most software projects, the primary focus should be on the
domain and domain logic; and (2) Complex domain designs should be based
on a model.

• Domain Expert A member of a software project whose field is the domain
of the application, rather than software development. Not just any user of
the software, the domain expert has deep knowledge of the subject.

• Ubiquitous Language A language structured around the domain model and
used by all team members to connect all the activities of the team with the
software.

16

Domain Driven Design

http://domaindrivendesign.org/freelinking/Domain-Driven%2520Design
http://domaindrivendesign.org/freelinking/Domain-Driven%2520Design
http://domaindrivendesign.org/freelinking/Domain%2520Expert
http://domaindrivendesign.org/freelinking/Domain%2520Expert
http://domaindrivendesign.org/freelinking/Ubiquitous%2520Language
http://domaindrivendesign.org/freelinking/Ubiquitous%2520Language

Exploring lightweight event sourcing

Event Sourcing

17

• All state changes are explicitly captured
using domain events

• Capture the intent of the user and the
related data

• Events represent the outcome of application
behavior

Exploring lightweight event sourcing

Source Control

18

Exploring lightweight event sourcing

Source Control

18

RCS

SCCS PVCS

CVS
Subversion

Darcs Git
Mercurial

BitKeeper

Exploring lightweight event sourcing

Domain Behavior

19

Exploring lightweight event sourcing

Draft Invoice
Created

generate

Domain Behavior

19

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Total:
0.00

Draft Invoice
Created

generate

apply

Domain Behavior

19

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Total:
0.00

Draft Invoice
Created

Recipient: "Erik"

Invoice Recipient
Changed

generate

generateapply

Domain Behavior

19

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

Draft Invoice
Created

Recipient: "Erik"

Invoice Recipient
Changed

generate

generateapply apply

Domain Behavior

19

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

Draft Invoice
Created

Recipient: "Erik"

Invoice Recipient
Changed

Item: "Food"
Item amount: 9.95
Total amount: 9.95

Invoice Item
Added

generate

generate generateapply apply

Domain Behavior

19

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total:
9.95

Item:
"Food"

Amount:
9.95

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

Draft Invoice
Created

Recipient: "Erik"

Invoice Recipient
Changed

Item: "Food"
Item amount: 9.95
Total amount: 9.95

Invoice Item
Added

generate

generate generateapply apply apply

Domain Behavior

19

Exploring lightweight event sourcing

Event
Store

Draft Invoice
Created

Recipient: "Erik"

Invoice Recipient
Changed

Item: "Food"
Item amount: 9.95
Total amount: 9.95

Invoice Item
Added

Only the events need
to be stored on disk

20

.......

Exploring lightweight event sourcing

Reloading from history

21

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Total:
0.00

Draft Invoice
Created

apply

Reloading from history

21

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

Draft Invoice
Created

Recipient: "Erik"

Invoice Recipient
Changed

apply apply

Reloading from history

21

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total:
9.95

Item:
"Food"

Amount:
9.95

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

Draft Invoice
Created

Recipient: "Erik"

Invoice Recipient
Changed

Item: "Food"
Item amount: 9.95
Total amount: 9.95

Invoice Item
Added

apply apply apply

Reloading from history

21

Exploring lightweight event sourcing

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total:
9.95

Item:
"Food"

Amount:
9.95

Invoice

Status:
"Draft"

Total:
0.00 Invoice

Status:
"Draft"

Recipient:
"Erik"

Total:
0.00

Draft Invoice
Created

Recipient: "Erik"

Invoice Recipient
Changed

Item: "Food"
Item amount: 9.95
Total amount: 9.95

Invoice Item
Added

apply apply apply

Reloading from history

21

Exploring lightweight event sourcing

YAGNI?

22

Exploring lightweight event sourcing

YAGNI?

• On the checkout page we’d like to promote
products that customers previously
removed from their shopping cart.

22

Exploring lightweight event sourcing

YAGNI?

• On the checkout page we’d like to promote
products that customers previously
removed from their shopping cart.

• Can you tell us how many people removed
a product but bought it later anyway?

22

Exploring lightweight event sourcing

YAGNI?

• On the checkout page we’d like to promote
products that customers previously
removed from their shopping cart.

• Can you tell us how many people removed
a product but bought it later anyway?

• ... over the past 5 years?
... and how much time passed in-between?

22

Exploring lightweight event sourcing

YAGNI?

• We have reports of a strange bug, but have
not been able to isolate it. Could you look
at the production data to find out what’s
going on?

23

Exploring lightweight event sourcing

Is it worth it?

24

Exploring lightweight event sourcing

Is it worth it?

• Make the event sourcing implementation as
simple as possible

24

Exploring lightweight event sourcing

Is it worth it?

• Make the event sourcing implementation as
simple as possible

• ... while avoiding the complexities of
databases, ORMs, etc.

24

Exploring lightweight event sourcing

Is it worth it?

• Make the event sourcing implementation as
simple as possible

• ... while avoiding the complexities of
databases, ORMs, etc.

• ... unless you want or need them :)

24

Exploring lightweight event sourcing

Implementation

25

Exploring lightweight event sourcing

Implementation
• Events for durability

25

Exploring lightweight event sourcing

Implementation
• Events for durability

• Keep current state in RAM
(Memory Image)

25

Exploring lightweight event sourcing

Implementation
• Events for durability

• Keep current state in RAM
(Memory Image)

• Scala case classes to
define events and
immutable data
structures

25

Exploring lightweight event sourcing

Implementation
• Events for durability

• Keep current state in RAM
(Memory Image)

• Scala case classes to
define events and
immutable data
structures

• Independent components
composed into a single
application

25

Exploring lightweight event sourcing

Simple functionality
example

• “CRUD”: no domain logic, so no aggregate

• So we’ll persist events directly from the UI

• Useful to get started

• ... and even complex applications still
contain simple functionality

26

Exploring lightweight event sourcing 27

“CRUD”

Exploring lightweight event sourcing 27

“CRUD”
Create/Update/Delete

Exploring lightweight event sourcing 27

“CRUD”
Create/Update/Delete

Validate input and
generate event

HTTP POST

Exploring lightweight event sourcing 27

Event
Store

Save Event

“CRUD”
Create/Update/Delete

Validate input and
generate event

HTTP POST

Exploring lightweight event sourcing 27

Event
Store

Save Event

“CRUD”
Create/Update/Delete

Validate input and
generate event

HTTP POST

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Presentation Model

Exploring lightweight event sourcing 27

Event
Store

Save Event

“CRUD”
Create/Update/Delete

Render View
Query

Validate input and
generate event

HTTP POST

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Presentation Model

Exploring lightweight event sourcing 27

Event
Store

Save Event

“CRUD”
Create/Update/Delete

Read

Render View
QueryHTTP GET

Validate input and
generate event

HTTP POST

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Presentation Model

Exploring lightweight event sourcing

Controller

28

 post("/todo") {
 field("text", required) match {
 case Success(text) =>
 commit(ToDoItemAdded(ToDoItem(UUID.randomUUID(), text)))
 redirect(url("/todo"))
 case Failure(error) =>
 new ToDoView(toDoItems, Some(error)),
 }
 }

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Render View
QueryHTTP GET

Validate input and
generate event

HTTP POST

Exploring lightweight event sourcing

Memory Image

29

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Render View
QueryHTTP GET

Validate input and
generate event

HTTP POST

case class ToDoItems (
 all : Map[UUID, ToDoItem] = Map.empty,
 recentlyAdded: Vector[UUID] = Vector.empty) {

 def apply(event: ToDoItemEvent) = event match {
 case ToDoItemAdded(item) =>
 copy(all + (item.id -> item), recentlyAdded :+ item.id)
 // [... handle other event types ...]
 }

 def mostRecent(count: Int) = recentlyAdded.takeRight(count).map(all).reverse
}

Exploring lightweight event sourcing

View

30

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Render View
QueryHTTP GET

Validate input and
generate event

HTTP POST

<table class="zebra-striped">
 <thead><tr><th>To-Do</th></tr></thead>
 <tbody>{
 for (item <- toDoItems.mostRecent(20)) yield {
 <tr><td>{ item.text }</td></tr>
 }
 }</tbody>
</table>

Exploring lightweight event sourcing 31

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Domain Driven Design

Read

Render View
QueryHTTP GET

Validate input and
generate event

HTTP POST

Exploring lightweight event sourcing 31

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Domain Driven Design

Command

Domain Model

Read

Render View
QueryHTTP GET

Validate input and
generate event

HTTP POST

Exploring lightweight event sourcing

Domain Code

32

sealed trait InvoiceEvent
case class InvoiceCreated() extends InvoiceEvent
case class InvoiceRecipientChanged(recipient: String) extends InvoiceEvent
case class InvoiceItemAdded(item: InvoiceItem, totalAmount: BigDecimal) extends InvoiceEvent
case class InvoiceSent(sentOn: LocalDate, paymentDueOn: LocalDate) extends InvoiceEvent

Exploring lightweight event sourcing

Domain Code

33

case class DraftInvoice(
 recipient: Option[String] = None,
 nextItemId: Int = 1,
 items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

 def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] = ...

 // [... other domain logic ...]

 private def itemAdded = when[InvoiceItemAdded] { event =>
 // ...
 }

}

Exploring lightweight event sourcing

Domain Code

33

case class DraftInvoice(
 recipient: Option[String] = None,
 nextItemId: Int = 1,
 items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

 def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] = ...

 // [... other domain logic ...]

 private def itemAdded = when[InvoiceItemAdded] { event =>
 // ...
 }

}

The “Brains”

Exploring lightweight event sourcing

Domain Code

33

case class DraftInvoice(
 recipient: Option[String] = None,
 nextItemId: Int = 1,
 items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

 def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] = ...

 // [... other domain logic ...]

 private def itemAdded = when[InvoiceItemAdded] { event =>
 // ...
 }

}

The “Brains”

The “Muscle”

Exploring lightweight event sourcing

Domain Code

34

case class DraftInvoice(
 recipient: Option[String] = None,
 nextItemId: Int = 1,
 items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

 // ...

 def addItem(description: String, amount: BigDecimal): Behavior[DraftInvoice] =
 itemAdded(InvoiceItemAdded(InvoiceItem(nextItemId, description, amount), totalAmount + amount))

 private def totalAmount = items.values.map(_.amount).sum

 private def readyToSend_? = recipient.isDefined && items.nonEmpty

 // ...

 private def itemAdded = when[InvoiceItemAdded] { event =>
 copy(nextItemId = nextItemId + 1, items = items + (event.item.id -> event.item))
 }

}

Exploring lightweight event sourcing

Domain Code

35

case class DraftInvoice(
 recipient: Option[String] = None,
 nextItemId: Int = 1,
 items: Map[Int, InvoiceItem] = Map.empty) extends Invoice {

 ...

 /** Reload from history. */
 protected[this] def applyEvent = recipientChanged orElse itemAdded orElse sent

 ...
}

Exploring lightweight event sourcing

Validate input and
generate event

HTTP POST

36

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Cooperating Users
Create/Update/Delete

Read

Render View
QueryHTTP GET

Exploring lightweight event sourcing

Validate input and
generate event

HTTP POST

36

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Cooperating Users

Read

Render View
QueryHTTP GET

Conflict Resolution
Submit Event

Conflicting Events

Exploring lightweight event sourcing

Validate input and
generate event

HTTP POST

36

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Cooperating Users

Read

Render View
QueryHTTP GET

Conflict Resolution
Submit Event

Conflicting Events

Checkout revision 23

Exploring lightweight event sourcing

Validate input and
generate event

HTTP POST

36

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Cooperating Users

Read

Render View
QueryHTTP GET

Conflict Resolution
Submit Event

Conflicting Events

Checkout revision 23

Submit events
based on revision 23

Exploring lightweight event sourcing

Validate input and
generate event

HTTP POST

36

Event
Store

Save Event

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Apply Event

Cooperating Users

Read

Render View
QueryHTTP GET

Conflict Resolution
Submit Event

Conflicting Events

Checkout revision 23

Submit events
based on revision 23

Compare submitted events
with intermediate
events baed on
current revision

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Events

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Push

Events

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Push

Events

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Push

RDBMS

Events

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Push

RDBMSSolr / Neo4J /
HBase / ...

Events

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Push

RDBMSSolr / Neo4J /
HBase / ...

System
Integration

Order Fullfillment
Payment Provider

Legacy System

Events

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Push

 Replica

RDBMSSolr / Neo4J /
HBase / ...

System
Integration

Order Fullfillment
Payment Provider

Legacy System

Events

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Push

 Replica

RDBMSSolr / Neo4J /
HBase / ...

System
Integration

Order Fullfillment
Payment Provider

Legacy System

Events

Exploring lightweight event sourcing 37

Event Store

Invoice

Status:
"Draft"

Recipient:
"Erik"

Invoice Item

Total: 9.95

Item:
"Food"

Amount:
9.95

Presentation Model

Push

 Replica

RDBMSSolr / Neo4J /
HBase / ...

System
Integration

Order Fullfillment
Payment Provider

Legacy System

Auditors

Events

Exploring lightweight event sourcing

Event Store

38

• Stores sequence of events

• Dispatches events when successfully
committed

• Replays events on startup

• It’s your application’s transaction log

Exploring lightweight event sourcing

Writing Events to Disk

39

 private class JournalFileWriter(file: File, var sequence: Long) {
 private val checksum = new CRC32()
 private val fileOutputStream = new FileOutputStream(file)
 private val dataOutputStream = new DataOutputStream(
 new CheckedOutputStream(
 new BufferedOutputStream(fileOutputStream), checksum))

 def write(commit: Array[Byte]) {
 sequence += 1
 checksum.reset()
 dataOutputStream.writeLong(sequence)
 dataOutputStream.writeInt(commit.size)
 dataOutputStream.write(commit)
 dataOutputStream.writeInt(checksum.getValue().toInt)
 }

 def sync(metadata: Boolean = false) {
 dataOutputStream.flush()
 fileOutputStream.getChannel().force(metadata)
 }
 }

Exploring lightweight event sourcing

Example Application

• https://github.com/erikrozendaal/scala-
event-sourcing-example

• (soon) https://github.com/zilverline/lessdb-
example

• Blog series coming soon at http://
blog.zilverline.com

40

https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/zilverline/lessdb-example
https://github.com/zilverline/lessdb-example
https://github.com/zilverline/lessdb-example
https://github.com/zilverline/lessdb-example
http://blog.zilverline.com
http://blog.zilverline.com
http://blog.zilverline.com
http://blog.zilverline.com

Exploring lightweight event sourcing

Implementation
Limitations

• Single-threaded event store using disruptor pattern

• ~ 5.000 commits per second

• Number of events to replay on startup

• ~ 70.000 JSON serialized events/second

• ~ 200.000 protobuf serialized events/second

• Total number of objects to store in main memory

• JVM can run with large heaps (tens of gigabytes)

41

Exploring lightweight event sourcing

But ready to scale

• Advanced event store implementations support
SQL, MongoDB, Amazon SimpleDB, etc.

• Use persisted view model for high volume objects
(fixes startup time and memory usage)

• Easy partitioning of aggregates (consistency
boundary with unique identifier)

• Load aggregates on-demand, use snapshotting

42

Exploring lightweight event sourcing

Conclusion

• Fully capture historical information

• Independent components where each part
of the application can use its own data
model

• Easier to fully understand compared to
traditional ORM based approach

• Need to learn “Event-Driven” thinking

43

Thanks!

Exploring lightweight event sourcing

References
• Example code https://github.com/erikrozendaal/scala-event-sourcing-example

• CQRS http://cqrsinfo.com/

• Greg Young, “Unshackle Your Domain”
http://www.infoq.com/presentations/greg-young-unshackle-qcon08

• Pat Helland, “Life Beyond Distributed Transactions: An Apostate's Opinion”
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf

• Erik Rozendaal, “Towards an immutable domain model” http://
blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-
monads-part-5/

• Martin Fowler, “Memory Image”, http://martinfowler.com/bliki/
MemoryImage.html

• Martin Fowler, “The LMAX Architecture”, http://martinfowler.com/articles/
lmax.html

45

https://github.com/erikrozendaal/scala-event-sourcing-example
https://github.com/erikrozendaal/scala-event-sourcing-example
http://cqrsinfo.com
http://cqrsinfo.com
http://www.infoq.com/presentations/greg-young-unshackle-qcon08
http://www.infoq.com/presentations/greg-young-unshackle-qcon08
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://blog.zilverline.com/2011/02/10/towards-an-immutable-domain-model-monads-part-5
http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/bliki/MemoryImage.html
http://martinfowler.com/articles/lmax.html
http://martinfowler.com/articles/lmax.html
http://martinfowler.com/articles/lmax.html
http://martinfowler.com/articles/lmax.html

