
High performance and scalable

architectures

Allard Buijze – allard.buijze@trifork.nl

A practical introduction to CQRS and Axon Framework

Allard Buijze

Software Architect at Trifork

Organizers of GOTO & QCON

~ 15 years of web development experience

Strong believer in DDD and CQRS

Developer and initiator of Axon Framework

Java Framework for scalability and performance

www.axonframework.org

Designed for high performance

Designed for high performance (?)

Layered architecture

Method invocation Cache

Worker pools

Web Cache Session replication

Distributed 2nd level cache Query Cache

Evolution of a Domain Model

Evolution of a Domain Model

Evolution of a Domain Model

Isolating performance bottlenecks

How do you identify –and then isolate– the
components that need performance tuning?

Isolating performance bottlenecks…

Principles of CQRS

Use different models for different purposes

Commands

Queries

Define clear consistency boundaries

Aggregates

Address non-functional requirements

Response times / latency

Usage / throughput

Staleness

Consistency

CQRS Based Architecture

CQRS Based Architecture

Axon Framework

“CQRS Framework” for Java

Simplify CQRS based applications

Provides building blocks for CQRS applications

Current version*: 2.0.6

More information: www.AxonFramework.org

* On November 20th, 2013

Axon Framework

Provide necessary abstractions

EventBus

CommandBus

Saga, Aggregate, Event

Provide infrastructure building blocks

Local JVM (Simple.....)

High performance (DisruptorCommandBus)

Distributed (DistributedCommandBus, AMQPTerminal)

Other building blocks

Given-when-then test fixtures

Event Store

The Case: BridgeBig.com

On-line Bridge (card game) platform

100% Browser based

Play tournaments for money prizes

BridgeBig – A CQRS based architecture

Divide the application in logical functional components / bounded contexts

User account

Tournament

Game

Separate the commands from the queries

Main frameworks, libraries & tools

Axon Framework

Spring

GWT

Hibernate / JPA

RabbitMQ

MySQL

Main application components

Front-end
• Display game state
• Catch user actions

Game engine
• Keep track of game state
• Enforces Bridge rules
• Process commands

Tournament engine
• Game coordination
• Player ranking
• Process commands

Query component(s)
• Pushes events to clients
• Executes queries

Event Store
• Stores events
• Source of engine

state

Relational Store
• Stores Query

Models

Aggregates & Bounded Contexts

Game and Tournament

Clearly separated

Each has a separate “core API”

Improves maintainability

Easy to implement new tournament types

Seamless refactoring for performance improvements

Aggregates are “synchronized” using Sagas

Triggered by Events

Dispatch Commands

Event Sourcing

Storage option for command model

Past events contain invaluable data

Appending small delta’s is faster

Build new features

Concept of “Credits” is added later

Management reports based on data from day 1

Gameplay analysis

Fraud detection a posteriori

Tests described functionally

Event Sourcing – The code

Event Sourcing - Testing

Given-when-then fixtures

Given some past events

When I apply a new Command

Expect these new Events

fixture.given(gameStarted())

 .when(callCommand)

 .expectEvents(new CallMadeEvent(…),

 new TurnChangedEvent(…));

What if the platform becomes a success?

BridgeBig’s plan for scaling out

BridgeBig – The success story?

2012 2013 2014 2015 2016 2017

Visitors

Scalability

Scaling out is straightforward

No need to change architectural features

No need to change application logic

No caches “to the rescue”

Step 1: Each context on a different machine

Publish events over a message broker (e.g. RabbitMQ)

Step 2: Duplicate a context

Route commands based on targeted aggregate identifier

Consistent hashing

Standard component in Axon 2

Demo

See some scalability in action

Routing commands – Consistent Hashing

00

!
F2

DD 33

AA 66

Routing commands – Node Membership

Axon Framework

DistributedCommandBus

JGroupsConnector

Jgroups

“Toolkit for reliable multicast messaging”

Automatic detection and management of “members”

Multicast, Fixed IP list, Gossip

(Limited) State sharing

Messaging

Boosting performance

Making the most of existing CPU power

Tackling performance bottlenecks

All functional components are split into separate modules

Divide, measure and conquer

Game Engine has biggest impact on overall performance

Beware of false assumptions

 2 threads = 1000 commands/second

20 threads = 10000 commands/second

High performance Command Processing

Disruptor

“High performance inter-thread messaging”

Alternative to queues

Less locks and memory barriers

Mechanical sympathy

http://lmax-exchange.github.com/disruptor/

http://www.parleys.com/#st=5&id=2772

Producer

Consumer

Consumer

Disruptor Command Bus

Producer

Prepare command for execution

Command Handler

Invoke the command handler

Serializer (Optional)

Serialize the resulting events

Event Publisher

Publish resulting events

Command
Handler

Producer

Event
publisher

Serializer

Battle of the Buses in Axon Framework

SimpleCommandBus

Command executed on dispatching thread

 96 842 commands per second (JDK 6, pool = 2)

140 753 commands per second (JDK 6, pool = 4)

120 980 commands per second (JDK 6, pool = 8)

276 671 commands per second (JDK 6, no pool)

298 311 commands per second (JDK 7, no pool)

DisruptorCommandBus

Each command processed by 2 threads

 961 168 commands per second (JDK 6)

1 010 979 commands per second (JDK 7)

Intel Core i7 2.80Ghz – 2 cores (4 threads) – 6 GB RAM

User Interface Performance Tuning

A little white lie never hurts an end-user

HTTP Performance Overhead

Users want to see real time data on screen

Or at least, think they do

HTTP protocol overhead is immense

> 60% of data is overhead

Don’t underestimate cost of Socket.accept()

Use keep-alive when possible

Tune your web server

I want to know what’s happening on BridgeBig

POST http://localhost:8080/gametable/gamePolling HTTP/1.1

Host: localhost:8080

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:15.0) Gecko/20100101 Firefox/15.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

X-GWT-Permutation: HostedMode

X-GWT-Module-Base: http://localhost:8080/gametable/

Content-Type: text/x-gwt-rpc; charset=utf-8

Referer: http://localhost:8080/game?tournamentId=88271c61-e3d0-495d-b51e-c38024696d61&gwt.codesvr=192.168.56.1:9997

Content-Length: 383

Cookie: POWER_USER="rene|2012-12-07T06:52:02.541Z|e30a3b211952461fc13434db7e83574a7fcd3492";

JSESSIONID=48A7A3BF0292F039639F5756DA84FA7F; backdoor=1

Pragma: no-cache

Cache-Control: no-cache

7|0|10|http://localhost:8080/gametable/|AC956FD5F7AA72CEE499AAAF712C4081|com.bridgebig.web.game.shared.service.GamePollingService|poll|

com.bridgebig.api.ui.game.common.GamePollRequest/433853789|com.bridgebig.api.common.Participant/3784909309|2b989bb5-a005-464a-b084-

da1c66cb3500|88271c61-e3d0-495d-b51e-c38024696d61|rene|6338f72c-81b3-42b9-8c49-552ed3f910e4|1|2|3|4|1|5|5|6|7|8|9|10|

Here’s what happened

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Cache-control: no-cache, no-store, max-age=0

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Disposition: attachment

Content-Type: application/json;charset=utf-8

Content-Length: 470

Date: Tue, 16 Oct 2012 11:37:32 GMT

//OK['TppXUli',8,'TppXUi7',0,2,0,7,0,6,2,5,4,2,2,3,1,2,1,["com.bridgebig.api.ui.game.common.GameP

ollResponse/1198729754","java.util.ArrayList/4159755760","com.bridgebig.api.ui.game.uievent.UICal

lExplanationsFetchedEvent/3304683639","com.bridgebig.api.game.common.Bid/4116320222","com.bridgeb

ig.api.game.common.Level/2593678207","com.bridgebig.api.game.common.Suit/2748266156","com.bridgeb

ig.api.game.common.Bidding/984765157","18fadec5-34b7-4a65-b995-5ae97cb9508c"],0,7]

Real time UI feedback

There is an Event for every change

Stream those events (directly) to the UI

WebSockets

Fallback to Long Polling

Servlet 3 Async

Boosts perceived performance

WebSockets

Effectively: Full Duplex TCP connection

With SSL/TLS Support

HTTP 1.1 compatible

Supported by Chrome, Firefox, IE10, etc.

Protocol overhead (excl. handshake): 2-14 bytes per message

Result prediction

Commonly seen procedure:

Server.loadUserDetails()

User modifies data and clicks “save”

Server.updateUserDetails()

Server.loadUserDetails()

Why would you want to “read your writes”?

Update the User Interface *while* sending the command to the server

Only act on errors

Summarizing

Technology overview

Front-end
• Browser as app. platform
• Instant feedback
• WebSockets

Game engine
• Distributed CommandBus
• Disruptor CommandBus
• Cache (short lived)

Tournament engine
• Distributed CommandBus
• Disruptor CommandBus
• Cache (longer lived)
• Sagas

Query component(s)
• Push events to clients
• Straightforward queries

Event Store
• Optimized for

appending

Relational Store
• Denormalized data

High performance and scalable architectures

Divide the application in logical functional components / bounded contexts

Separate the commands from the queries

Profiling and performance testing

Improve performance or scale out key components

Trick users into believing it’s fast

Use caching thoughtfully

Beware of arbirary time-to-live settings

Prefer fact-based eviction (e.g. Events)

Questions?

More information:

http://www.axonframework.org

http://www.jgroups.org

http://lmax-exchange.github.com/disruptor/

http://www.parleys.com/#st=5&id=2772

allard.buijze@trifork.nl

