
1000 YEAR-OLD DESIGN PATTERNS
Ulf Wiger

Erlang Solutions Ltd

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• Exploring a perspective on SW design

- Human patterns for concurrency

• A walk down Memory Lane

• No easy recipes

What this talk is about

Wednesday, 12 October 2011

• To plant my idea...

• A few movies will be
recommended

• …when they illustrate
some aspect of this talk

• Try expensing them as
“study of intuitive
concurrency design patterns”

 From Inception (2010) http://www.imdb.com/title/tt1375666/

Movie Tips

Wednesday, 12 October 2011

• All sorts of concurrency
problems are common
knowledge to humans

• Mitigation strategies
have been explored for
millennia

• Lots of coordination
and supervision
design patterns

http://www.sassansanei.com/images/fullsize-trafficjam-640x480.jpg

Human cooperation is naturally concurrent

Wednesday, 12 October 2011

• Although humans
document their algos,

• …they do it for human
consumption (S.O.P.s)

• Not for programmers

• Most research into
”human algorithms” is
about cognitive modeling
(autonomous robots)

Mars Rover

A problem…

Wednesday, 12 October 2011

• Collect examples of how
humans solve cooperation
problems

• Go to the movies!

• Observe real-life
patterns; consider
what could transfer
to software systems

Research into human protocol

Wednesday, 12 October 2011

• Alaskan Command & Control
System Military Automated
Network

• Built in 4 months by a fighter pilot
from Memphis, and some geeks

• First ever “Overall Outstanding”
rating given by NORAD 1989

AC2SMAN - My formative years

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• Mission-critical

• Soft real-time

• Inconsistent data input

• Varying operating conditions

• Potentially global scale

• No single point of failure (40+ sites)

• Live, simulation and exercise – sometimes
simultaneously

The C2 System Design Challenge

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• One project had a $200M/year budget

• Desert Storm C2 system installation took 50K
man-hours! (…!!!)

• (in our view) No alternative system came close
to competing

The Competition

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• Keep the project small…

• Automate the existing workflow!

• Military C2 goes way back...

- Tsun Tzu, 500 B.C.

- Julius Caesar, ca 50 B.C.

- Genghis Khan, 1200s

- von Clausewitz, 1800s

The Secret?

Wednesday, 12 October 2011

• Crimson Tide (1995)

• Military command
protocol

• Redundancy

• Fail-safes

• Byzantine Generals
Problem

• Bully algorithm

http://www.imdb.com/title/tt0112740/

(Movie Tip)

Wednesday, 12 October 2011

http://www.imdb.com/title/tt0112740/
http://www.imdb.com/title/tt0112740/

© 2011 Erlang Solutions Ltd.

• Asynchronous, event-triggered replication

- Across 40 sites

• No 2-phase commit – no conflicts ”possible”

• Main challenge: full replication over a 19.2Kbps
modem line

• Relational databases anno 1989 were simply non-
starters

AC2SMAN Database issues

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• Trying to use early-90s Distributed RDBMS
technology

• This was the beginning of the hardships
that led to the CAP Theorem

• The problem didn’t call for an RDBMS

- We’re automating a workflow that’s been
around for millennia

The failed alternative?

Wednesday, 12 October 2011

• Real-time subscription feed for tactical
map workstations

• Messaging server was a big
pile of C++ code

• Single point of failure

• Ran out of memory daily

• (Not due to programmer incompetence)

The Feed Aggregation Problem

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• Tons of approaches evaluated

• CASE Tools, Client-Server middleware,
AI middleware…

• Something suitable for a one-man development
team

I was Searching for a Solution

Wednesday, 12 October 2011

• Eventually landed in telecoms 1992

• ”Computers in Telecommunictions”
course at KTH, Stockholm

• Teachers: B Däcker, R Virding

• Programming language: Erlang

• Erlang seemed to be a perfect fit!

25-lines switchboard,
Natal Province, South Africa 1897
Cross-switchboard calls required

human interaction.

Eureka!

Wednesday, 12 October 2011

http://video.google.com/videoplay?docid=-5830318882717959520#

Erlang, Intuitively

Wednesday, 12 October 2011

http://video.google.com/videoplay?docid=-5830318882717959520#
http://video.google.com/videoplay?docid=-5830318882717959520#

© 2011 Erlang Solutions Ltd.

• One concurrent process
for each naturally
concurrent
activity

Erlang, Intuitively

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• One concurrent process
for each naturally
concurrent
activity

Erlang, Intuitively

Wednesday, 12 October 2011

S Client monitors server1

Client sends a request2

(Blocks while waiting)3

C
MRef

SC
Request (Mref)

SC
Reply (Mref)

Server sends reply4

Client-server in Erlang

Wednesday, 12 October 2011

S Client monitors server1

Client sends a request2

(Blocks while waiting)3

C
MRef

SC
Request (Mref)

SC
Reply (Mref)

Server sends reply4

Client-server in Erlang

call(S, Request, Timeout) ->
 Mref = monitor(process, S),
 S ! {call, Mref, Request},
 awaiting_reply(Mref, Timeout).

awaiting_reply(Mref, Timeout) ->
 receive
 {Mref, Reply} ->
 Reply;
 {’DOWN’, Mref, _, _, Reason} ->
 error(Reason)
 after Timeout ->
 error(timeout)
 end.

Wednesday, 12 October 2011

One-for-all Escalation

Supervisors – Out-of-Band Error Handling

Wednesday, 12 October 2011

One-for-all Escalation

Supervisors – Out-of-Band Error Handling

One-for-one

Wednesday, 12 October 2011

One-for-all Escalation

Supervisors – Out-of-Band Error Handling

One-for-one

Rest-for-one

Wednesday, 12 October 2011

Supervisors – Out-of-Band Error Handling

One-for-one

Wednesday, 12 October 2011

Supervisors – Out-of-Band Error Handling

One-for-one

One-for-all

Rest-for-one

Wednesday, 12 October 2011

Escalation

Supervisors – Out-of-Band Error Handling

One-for-one

One-for-all

Rest-for-one

Wednesday, 12 October 2011

Static process opens listen socket1

Spawns an acceptor process2

Acceptor receives incoming3

Acks back to socket owner4

New acceptor is spawned5

Replies sent directly to socket6

listen()

accept()

Handling sockets in Erlang

Wednesday, 12 October 2011

• Practical because of
light-weight concurrency

• Normalizes messages

• Main process can pattern-
match on messages

• Keeps the main logic
clear

spawn_link(PidA,	
 PidB)	
 -­‐>
	
 	
 	
 	
 spawn_link(fun()	
 -­‐>
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 loop(#state{a_pid=	
 PidA,
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b_pid	
 =	
 PidB})
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end).

PidA MM PidB
XML Int.

await_negotiation(State)	
 -­‐>
	
 	
 	
 	
 receive
	
 	
 	
 	
 	
 	
 	
 	
 {From,
	
 	
 	
 	
 	
 	
 	
 	
 	
 {simple_xml,
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 [{"offer",	
 Attrs,	
 Content}]}}	
 -­‐>
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 HisOffer	
 =
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 inspect_offer(Attrs,	
 Content),
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Offer	
 =	
 calc_offer(HisOffer,	
 State),
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 From	
 !	
 {self(),	
 Offer};
	
 	
 	
 	
 	
 	
 	
 	
 …
	
 	
 	
 	
 end.

loop(#state{a_pid	
 =	
 PidA,	
 b_pid	
 =	
 PidB}	
 =	
 State)	
 -­‐>
	
 	
 	
 	
 receive
	
 	
 	
 	
 	
 	
 	
 {PidA,	
 MsgBin}	
 when	
 is_binary(MsgBin)	
 -­‐>
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {simple_xml,	
 _}	
 =	
 Msg	
 =	
 vccXml:simple_xml(MsgBin),
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 PidB	
 !	
 {self(),	
 Msg},
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 loop(State);
	
 	
 	
 	
 	
 	
 	
 {PidB,	
 {simple_xml,	
 _}	
 =	
 Msg}	
 -­‐>
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Bin	
 =	
 vccXml:to_XML(Msg),
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 PidA	
 !	
 {self(),	
 Bin},
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 loop(State)
	
 	
 	
 	
 end.

MMMM
MM

Middle-man Processes

Wednesday, 12 October 2011

• Three state machines described as one

• Implies a single-threaded event loop

• Introduces accidental complexity

Language Model Affects our Thinking

state	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 event	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 action	
 	
 	
 	
 	
 	
 	
 	
 	
 next	
 state
-­‐

...
I-­‐Open	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Send-­‐Message	
 	
 	
 	
 	
 	
 	
 I-­‐Snd-­‐Message	
 	
 I-­‐Open
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 I-­‐Rcv-­‐Message	
 	
 	
 	
 	
 	
 Process	
 	
 	
 	
 	
 	
 	
 	
 I-­‐Open	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 I-­‐Rcv-­‐DWR	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Process-­‐DWR,	
 	
 	
 I-­‐Open	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 I-­‐Snd-­‐DWA	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 I-­‐Rcv-­‐DWA	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Process-­‐DWA	
 	
 	
 	
 I-­‐Open	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 R-­‐Conn-­‐CER	
 	
 	
 	
 	
 	
 	
 	
 	
 R-­‐Reject	
 	
 	
 	
 	
 	
 	
 I-­‐Open	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Stop	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 I-­‐Snd-­‐DPR	
 	
 	
 	
 	
 	
 Closing	

...

Example: RFC 3588 – DIAMETER Base Protocol

Transport FSM

Handshake FSM

Wednesday, 12 October 2011

ClientClient

ServerServer

AAA

Transport FSM
• Handles heartbeat
logic (RFC 3539)

Hand-
shake

Service

Service FSM
• Request routing
• Failover
• Retransmission

Handshake FSM
• Capabilities exchange
• Leader election
• Only active during handshake

Client

Server

Dynamic request handler
• One per request

Use processes to separate concerns

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• I joined Ericsson 1996 to work with Erlang

• A very large project had just been canceled

- A well-publicized failure

• Distributed real-time, fault-tolerant complex
systems in C++

Ericsson – The Mythical Project

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• No obvious single culprit

• Obviously, the size of the project was a problem

- But why so large?

• OO mania, featuritis, hubris?

• My thought: failure to contain the problem

Why did it crash?

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• 200 people put into one building

• Mission: Build a product within 2 years

- Something in the ATM domain with Telecom
Characteristics

• Much leeway was given

• Erlang/OTP chosen as key implementation
technology

• Result: A product was delivered in 2 years

- Eventually returned Wireline Division to profit

AXD301 – The Pickup Project

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• Shell shocked from previous project

• Fall back on what’s known to work

• Straight and simple took us pretty far

- Up to 16x16 = 256 interconnected boards

- Up to 32 control plane processors

- Up to 500k simultaneous phone calls

- > 99.999% consistent uptime

- (including maintenance & upgrades)

Pragmatic thinking

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• Non-programmers in our projects liked Erlang

• They understood the abstractions and design
patterns

Outsiders about Erlang

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• We were building complex distributed message-
passing systems

•Key challenge:
contain the non-determinism!

• Prevent explosion of the state-event matrix

• This had been identified by Ericsson already in
the late 70s…

Abstractions for non-determinism

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• In one (mature) UML/C++ project,
10% of all bugs were related to
unexpected order of events

• Inadequate methods for abstracting away
accidental ordering

Some similar projects

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• Must have their own thread of control

• Communicate with messages

• A sense of time

• Adapt to changes/problems

• Control order of input processing

Programs modeling ”human protocols”

Wednesday, 12 October 2011

• The age-old classic
has coined a new
time management
method

• The idea: learn how
to keep the pile small

Tetris Management

Wednesday, 12 October 2011

• Used in a derogatory sense
at a major software
development project

• As in ”reactive management
without a plan”

• Basically, don’t let your
project become a tetris game

Tetris Management

Wednesday, 12 October 2011

© 2011 Erlang Solutions Ltd.

• What if your problem more resembles this?

• Would you attack this problem with a tetris approach?
http://www.worldslargestpuzzle.com/hof-008.html

A different kind of puzzle

Wednesday, 12 October 2011

• Search for a specific
piece

• Put away pieces that
don’t fit

• Keep at it until fitting
piece found

Event Handling Strategies

• Twist and place the next
piece — before it lands

• In cheat mode, you get
to peek at the next one

• Otherwise, hope for the
best

Wednesday, 12 October 2011

• Blocking, selective
receive

• Wait, until the next
desired piece arrives

• Ignore unknown pieces

Event Handling in Software

• FIFO, run-to-completion
event handling

• Not allowed to block

• Fine, as long as the
pieces fit

Wednesday, 12 October 2011

• Memento (2000)

• Human FIFO, run-to-
completion event
handling

• Storing context for
future reference

Memento (2000) http://www.imdb.com/title/tt0209144/

(Movie Tip)

Wednesday, 12 October 2011

• Our mental models
greatly influence how we
attack software problems

• Our real-life experience
is full of useful patterns
for concurrency

• Actor-style programming
is a pretty good fit for
modeling such patterns

In conclusion

Wall-E (2008) http://www.imdb.com/title/tt0910970/

Wednesday, 12 October 2011

© 1999-2011 Erlang Solutions Ltd.

Questions?

Wednesday, 12 October 2011

