
DEMYSTIFYING BIG DATA WITH
RIAK USE CASES

Martin Schneider

Basho Technologies!

Agenda
•  Defining “Big Data” in Regards to Riak
•  A Series of Trade-Offs
•  Use Cases
•  Q & A

Sales v1.0

About Basho & Riak

Basho Technologies is the Company
behind Riak

Riak is the Distributed Database

•  Solves problems traditional databases are ill-suited to
address - write-intensive, distributed apps, big data,
increased uptime.

•  Riak makes applications previously thought
impossible both easy and inexpensive to realize.

•  The world’s first commercially available distributed
systems management platform (Riak Core) with case-
specific data storage & retrieval modules (Riak DSRM)

•  Combines principles deployed on two of world’s most
successful distributed systems:

Riak: 	

+	

 =	

Defining Characteristics	

• masterless - no master or slave nodes, subsystems

• key-value store -- use a “well known” key to locate

values

• document-oriented - store anything: text, movies,

code

• clustered for high-availability - Riak runs on one or

many servers, replicates data automatically both within
cluster and between data centers

• industry-standard search - supports SOLR-based
search applications in use throughout industry

• map/reduce - uses a version of map/reduce to query
data

Basho Riak: the Product	

•  Open Source and Enterprise versions

•  Modules: KV Data Store, Search, Column* & File

Store*

•  Riak EnterpriseDS - enterprise-focused tools, 24x7

support

•  Easy to install, run, scale (<5 minutes to install,

configure, query a Basho cluster.)

•  Built using same principles as Akamai, leading

content delivery network (CDN), by original Akamai
team

•  Inexpensive alternative to Oracle, MySQL (< 5%
TCO)

* these modules available in late Q3 and Q4 of 2010	

Clients and Partners	

Sales v1.0

Sales v1.0

Trade-Off #1

•  You Get: Low-Latency, Global Storage

•  You Give Up: Granular Query Ability

•  Use Case: Purpose-built storage;
session stores, file-based storage, etc.

10

Trade-Off #2

•  You Get: Extreme Write Availability

•  You Give Up: Strict Consistency of
Entire Data Set

•  Use Case: E-Commerce shopping cart;
social media tools, etc.

11

Trade-Off #3

•  You Get: Ability to Deploy Read/Write
Intensive Applications across Data
Centers and Device Platforms

•  You Give Up: Latency in Offering Some
Reads

•  Use Case: Hi-Scale Mobile/Social
Applications

12

13

Users and Customers

Riak User:

•  Issue: Multiple data stores for content;
subscriber info

•  Solution: Riak as a distributed caching
layer

•  Benefit: Real-time access to premium
content on handheld devices

14

RDBMS can’t scale with traffic. Interactive media properties
can’t use Oracle data. Chose Riak over Couch and Cassandra.

Riak used to unlock the
data for high-volume
interactive properties.

With Riak the online
properties experiences
sub-10 ms latencies with
reduced error rates.

East Coast Data Center
 West Coast Data Center

Global	
 Web	
 Traffic	

Legacy	
 Databases	
 and	
 	

Data	
 Warehouses	

Use Case:

Comcast-NBC Interactive

Riak User:

•  Issue: Lots of unstructured voice data

•  Solution: Riak as distributed social
graph and content meta data store

•  Benefit: Scalable voice texting solution
connecting users in real-time

16

Riak User:

•  Issue: Millions of user interactions daily

•  Solution: User notification engine built
with Riak

•  Benefit: Better sort, manage, and
prioritize social interactions

17

Riak User: National Health
Service, Denmark

•  Issue: Providing personal health records

•  Solution: Distributed network of records;
available on any device

•  Benefit: Reliable system of record for
critical personal medical data

18

19

Benefits of Building Distributed
Systems with Riak:

19

"   Dynamo-based - a faithful adaptation of Amazon’s
Dynamo model

"   Cloud-Ready - elastic architecture means you can
grow clusters dynamically without downtime

"   Master-less - no single point of failure

"   Fault Tolerant - survive outages with no data loss

"   Multi-Data Center - write-available, master-less

replication

"   Linearly Scalable - adding 10% more nodes means

10% more capacity

"   No-Sharding - consistent hashing means 0%

downtime

Summary	

• Huge Opportunity: data creation has

outstripped storage. New solutions
needed.

• Simple, inexpensive, yet powerful modular
platform replaces mass of expensive point
solutions in enterprise.

• Built using same principles as Akamai,
leading content delivery network (CDN).

•  In the market with clients and revenue
today.

Sales v1.0

Riak Use Case Resources:

•  http://blog.basho.com/2011/03/28/Riak-and-

Scala-at-Yammer/

•  http://wiki.basho.com/Who-is-Using-Riak.html

•  http://www.infoq.com/interviews/sheehy-riak

•  http://blog.basho.com/2011/08/08/Riak-at-
Formspring-Video-from-SF-Riak-Meetup/

•  http://lanyrd.com/2011/erlang-factory-london/
sgwxw/ (Riak Mobile/Danish Health Service)

Sales v1.0

Thank You

martin@basho.com

www.basho.com

www.wiki.basho.com

 @mschneider718

Technical Appendix	

Consistent hashing and anti-entropy subsystems achieve high read-

and write-availability in and between data centers.	

Basic Concepts	

•  Simple operations: get, put & delete	

•  Riak stores values against keys.	

•  Encode your data how you like it.	

•  Keys organized into buckets (one-level namespaces)	

•  Object relationships expressed with links	

•  Consistent hashing, not sharding.	

•  Many vnodes hashed across fewer physical nodes	

Data Center B - LON	

	

1	

3	

 2	

Riak Cluster	

Data Center A - SJC	

	

1	

3	

 2	

Riak Cluster	

Replication within and
between clusters	

1	

3	

 2	

Riak Cluster	

2-way RW replication	

 1-way replication	

2-way RW replication	

2-way RW replication	

1	

3	

 2	

Riak Cluster	

Intra-cluster replication	

N copies of an object are replicated and stored
within a cluster, and all nodes can accept writes

for other nodes.	

Inter-cluster replication	

Clusters use TCP-based, streaming, masterless replication
to provide multi-data center high availability. Run between

racks or between data centers on different continents.	

Read-Only Clusters	

Clusters can be configured to

accept updates from other
clusters but not writes from

applications. Useful for fail-over
and to run compute- intensive

queries.	

Lose nodes, racks, data centers, or clusters with no downtime or data loss.	

Design Goals	

•  Always remain write-available	

•  Ensure Operational Simplicity	

•  consistent hashing distributes multiple copies across cluster	

•  CAP controls exposed: N, R, W values 	

•  Number of replicas to store, 	

•  # of Reads of N replicas or Writes to N nodes for request to be
considered successful	

•  Scale out, not up – add commodity servers to increase
compute capacity, fault-tolerance	

	

• Riak uses the technique of consistent hashing
to organize data storage.	

• Physical nodes run many vnodes (virtual nodes	

•  data mapped to vnodes on N # of hosts	

• Gossip protocol for vnode ownership

distributes load dynamically.	

• Adding servers is easy and does not cause

interruption.	

• Consistency maintained using logical versioning	

•  causality and version preserved during availability
and partitioning events	

•  vector clocks expose conflict for automatic
resolution	

Physical
Nodes
contain
equal

distributio
n of

vnodes	

A logical representation of a Basho
cluster. Each partition is a vnode.
Copies of data are distributed in
multiple locations on the ring.	

Replication and Consistency���
vnodes, vector clocks and gossip protocol	

Cluster of 	

Riak Servers	

 1	

3	

 2	

Consistent Hashing,
Not Sharding

Riak uses consistent hashing to cluster. There is no master
and no single replica of data. This technology is what we

used at Akamai and what Amazon now uses for their
shopping platform.

With Riak, data is distributed between N nodes.
In this case, N=3, or 3 replicas store a write.

With sharded solutions like Oracle or MongoDB or
CouchDB, each shard stores a primary copy of data.
(Maybe those shards are replicated, maybe not.)

20	

1

3
2

Master	

A-F	

 G-P	

 Q-Z	

2

1

3
 4

4 Single Points of Failure	

0 Single Points of Failure	

Consistent Hashing, 	

Superior to Sharding	

Even though node 3 fails, there are two copies still stored

and any node will accept a write for the failed node.

With sharding, if a node fails, the data range stored
on that shard is no longer available.

1	

3	

2	

Master	

A-F	

 G-P	

 Q-Z	

2

1

3
 4

4 SPOF	

Riak uses consistent hashing to cluster. There is no master and no
primary replica of data. This technology is what we used at Akamai

and what Amazon now uses for their shopping platform.

Consistent Hashing, 	

Superior to Sharding	

1	

3	

2	

With Riak, you can add another node at will.

You can remove a node just as easily.

Sharded databases require an intensive operational
intervention to shut down the database and re-distribute data.

And the mean time between machine failures is no shorter
with more shards. YOU ARE LESS FAULT TOLERANT.

< riak join #adds a node	
< riak leave #removes a node	

4	

Time consuming, usually requires downtime and...	

4 SPOF vs. 5 SPOF	

...you end up less fault-tolerant!	

2

1

3
 4

2
 3
 4
 5

1

Unlike with Riak, databases that use sharding also incur an operational cost. You cannot
dynamically scale a sharded database. You must shut down your application and re-shard.

Consistent Hashing Makes
Scaling Easy	

Write Availability and Scaling	

•  No Master DB means no single point of failure

•  Fast horizontal scaling using commodity servers

•  Add nodes dynamically, as well as scale down at will to

save money

•  No downtime to deploy more servers

•  Add servers for capacity, for redundancy, or both

•  User-controlled replication - Data replicated around ring
according to developer specifications thanks to tunable CAP
controls

•  Scale Write Capacity - Increase write capacity by simply
adding servers

•  No row-locking or resource contention for write-intensive
applications

Simplified Operations	

• Simple scaling up/down - two word commands to

add servers

•  a key benefit of masterless system/hinted

handoff/gossip

• Fungible Server set-up - no master anything

• Flexible Schema - no downtime for schema

changes

• Downtime isn’t Downtime - take any host out of

action (for repair, accident, or upgrade)
and just keep on going!

Simplified Operations	

• Simple scaling up/down - two word commands to

add servers

•  a key benefit of masterless system/hinted

handoff/gossip

• Fungible Server set-up - no master anything

• Flexible Schema - no downtime for schema

changes

• Downtime isn’t Downtime - take any host out of

action (for repair, accident, or upgrade)
and just keep on going!

•  Ruby, Java, PHP, python, HTTP, Protocol Buffers, JSON, Erlang
interfaces

•  HTTP - main interface

– Riak uses simple, standard HTTP methods to transfer data between client

and server.

à If you can process JSON and issue an HTTP request, you can easily use

Riak.

•  Riak stores data in “Buckets”,

– namespaces for documents with loose schemas.

– new buckets (and more importantly new schemas) are created on

demand

– add new data types/alter structure for Riak without taking your app out

of production

•  Query via SOLR Search MapReduce and Linked Data - built in map/

reduce function

–  designed to find and connect disparate documents containing links to

one another, giving developers the ability to query large sets of data
across entire clusters.

Interfaces and Query Methods	

•  Ruby, Java, PHP, python, HTTP, Protocol Buffers, JSON, Erlang
interfaces

•  HTTP - main interface

– Riak uses simple, standard HTTP methods to transfer data between client

and server.

à If you can process JSON and issue an HTTP request, you can easily use

Riak.

•  Riak stores data in “Buckets”,

– namespaces for documents with loose schemas.

– new buckets (and more importantly new schemas) are created on

demand

– add new data types/alter structure for Riak without taking your app out

of production

•  Query via SOLR Search MapReduce and Linked Data - built in map/

reduce function

–  designed to find and connect disparate documents containing links to

one another, giving developers the ability to query large sets of data
across entire clusters.

Interfaces and Query Methods	

