
Hi, my name is Lúcio Ferrão

Good Morning. Thank you for being here.

I’m here today to tell you a story,

how to bring software development to a wider audience.

1

But le me start by presenting myself

I’m one of the OutSystems founders,

I’ve spent the last 10 years with my team building a platform
In the hope to reduce the number of custom build frameworks…

2

Our ‘Platform’ is focused on the “Custom Enterprise Web Apps”.

That means traditional software,
Where you have a database model,
Web user interfaces,
Collaborative workflows
And integrations with existing systems.

Technically speaking, not a very thrilling environment

But then again, the challenge is not building thrilling environments

3

The challenge is building business value
Without resorting to expensive external developers…

And let me get this straight,
This is much more than a technical problem.

It starts with the problem of attracting skilled developers

4

And if we look for them, we can find very skilled developers for this specific domain

-Tech Savvy Business Users
-Developers that are using old technologies
-Developers that normally prefer to invest their time in business instead of coding

These are not illiterate persons,
on the contrary,
sometimes they are your most valuable resources.

Now, what do all these people have in common?
They want their job done, as fast and simple as possible,
and they don’t like solving all their problems using java and Javascript

Let me show you how we do this,
I don’t expect to surprise you with a silver bullet,
this is basically common sense.

5

But enough talk, let’s look at platform

We have a DSL that is modeled inside a Development Tool
Once ready, the end result is transported to the server
 where it is compiled into in a plain standard .Net or Java application

And there is also a tool to help monitor and manage your running your server.

6

We use the DSL to specify the database model. It is a plain relational database with
tables, relations, constraints.
It is not the most abstract way of describing your model, but it is a traditional one
And the key idea is to make it part of the application definition.

It has the nice side effect of strong typing all your table identifiers
and avoiding obvious mistakes
like comparing product identifiers with user identifiers.

7

The next layer we have is the User Interface,
it is basically a Drag-and-Drop editor for Web and Mobile Web pages
without messing with HTML or JavaScript

8

And to glue the user interface and the database layers, we code using flowcharts.

These flowcharts puts some of the code details one click away
and tries to focus you on the intention of each step

Most of our programmers end up using the node labels as micro comments

In this layer you have elements that represent assignments, ifs, executing other
actions.
To query the database you use strong typed queries, or even write your own SQL
directly.

9

And finally we model process workflows that contain human activity, database event
driven waits, notifications, automatic activities,
making long running process modeling a normal challenge.

10

Why visual, you may ask…

Because it is a human way to describe most coding artifacts

Because it is easy to capture and memorize visual patterns

Because it is easy to spot complexity pressuring developers to make it simple

And in the end, it leads to make it easier to understand code, reducing the cost to add
new developers to an existing project.

11

And what do we get for having an complete / all-in-one language?

The obvious one is that we minimize the use of different tools, and the related
context switch between them
But we also ensure model consistency and coherence across all application layers

It also reduces the “Technical Debt” by reducing the cost of change.

12

Let me give you and example of model consistency:

when we are at the database view and delete a table column…

13

We get immediate feedback of all the impact in the presentation and logic layers. You
don’t even have to compile your application.

14

Plus, the all-in-one approach also allow us to simplify the deployment and staging
operations.

As the model is complete, with a single click, we grab the application model, compile
it to a “standard” application and deploy it.

And you have a fully ready and upgraded version of the application you are working
on.

15

Why do we use a compiler instead of a runtime interpreter?

There are a lot of reasons to use a compiler.
These are the most relevant ones.

16

Let me make a pause here and explain how to scale the development from small toy
applications

17

To large and critical systems that we have

Some of our customers have built their entire core systems using the Agile Platform,
It includes billing systems, trading systems, and even high traffic public web-sites.

And as most large systems, you have to handle large teams…

18

That means you need to solve the collaboration challenges, including classic version
control changes and merges

19

You need to have a good debugger to dig into complex code

20

But above all, you need to make your developers comfortable in their learning
process

21

We use embedded tutorials to teach newcomers the language basics

22

We show them good examples of user interface design, usability, and simplicity

They will be able to code by example from early stages using a set of open source
applications

23

And when everything else fails, you can use the online community

24

That’s what I had to show today, I’m very proud of this platform, and I invite you to
try it for yourself using our website.

There is a free version you can use if you install on your PC.

Hope you like it.

25

Thank you for your attention

26

