
USABILITY LESSONS FOR APIS

Ian Cooper

Huddle

Who are you?

• Software Developer for 20 years
– Worked mainly for Software Companies

• Reuters, SunGard, Misys, Huddle

– Worked for a couple of MIS departments
• DTI, Beazley

• Microsoft MVP for C#
– Interested in OO design

– Interested in Agile methodologies and practices

• No smart guys
– Just the guys in this room

Huddle is an online collaboration app for
businesses, enabling you to manage projects,
files and people in the cloud

Agenda

• Why should you care?

• Personas, Goals, and Scenarios

• Documentation Driven Design

• Cognitive Dimensions

• Usability Testing

WHY SHOULD YOU CARE?
The Importance of Design

Design Matters!

Project Origami The iPad

What happens when we
develop for end users

Vision

Feature Sets

Personas

Goals

Scenarios

Prototyping

Stories

Scheduling

Specifications

UI Design

UI Code

Usability Testing

Further Code

Performance Testing

Acceptance Testing

Packaging

Documentation

Training

Support

A/B Testing

What happens when we
design for developers

Vision

Feature Sets

Personas

Goals

Stories

Scheduling

Scenarios

Prototyping

UI Design

UI Code

Further Code

Performance Testing

Acceptance Testing

Packaging

Documentation

Training

Support

A Contract with the World
Upstream Teams

 People are dependent on them, but
they don’t depend on anyone else.

Downstream Teams

 They are dependent on an upstream
team, they may or may not have folks
dependent on them.

An upstream team has no
reason not to pollute the
river, forcing the downstream
team to drink their pollution.

An API is a contract: it says we won’t
pollute the river, we will stick to these
environmental regulations, and you
have comeback if we don’t

The Importance of APIs

On the Web, REST dominates

PERSONAS, GOALS, SCENARIOS
Learning from the designers

Use Personas

Personas are archetypal
users. They ‘stand-in’ for
real users and help guide
our decisions

Persons identify user
motivations, expectations
and goals that drive
behavior

The more specific we make
our personas, the more
effective they are as design
tools. That's because we
reduce the ‘debate’ around
a personas goals as they
become more specific.

John is 35 years old and married with a 5 year old son, Joshua. His wife works as a PA, for his last company where they
met. This is John's third job since leaving university, where he did a degree in Mechanical Engineering. His first job after
leaving university was as an Access and Visual Basic programmer, for a small software house building accounting
solutions. He moved from there after 5 years to work at a pharmaceutical company as a Visual Basic programmer
building internal MIS solutions. John was disappointed with MS for releasing .NET, because ihe liked working in VB6 and
did not want to learn VB.NET.. Recently he has become worried that Microsoft is eroding his skills again with
announcements ending Silverlight, which he codes in day-to-day, for Windows 8.

John does not attend conferences, or user groups; he only rarely reads blogs and then it is always MSDN blogs. He did
attend Tech Ed 2005. He is definitely not Alt.NET, and never uses TDD. He thinks of that group as 'ivory-tower'
technologists who don't focus on delivering to users. Mostly this is fear - fear that he might have to give up evenings or
weekends to improve his skills. There is also a fear of appearing stupid by admitting there are things he does not know,
that are worth knowing. He used to be on Experts Exchange and Code Project but now gets most of his technical help
from Stack Exchange. John is knowledgeable about SQL server. His preferred development approach is to design the
schema and stored procedures to access it, expose that through a web service and then write a Silverlight UI to call
that.

If anything gives John pride its getting work done quickly. His users love his 'can do' attitude, his project managers the
speed with which he delivers to the requirements. John tries to write as little code as possible, code generation is his
favourite productivity secret, and he has authored his own CodeSmith and T4 templates to generate stored procedures
for data access. His templates are used throughout the team.

John is not a web developer. Most of his experience has been client-server. He can't understand why anyone would
write in JavaScript when they can code in C# using Silverlight. He has written SOAP web services, which were simple
wrappers to get data out of a Database. He has used WCF, but the configuration file is just voodoo to him, and he
makes it work by trial and error. He has never heard of REST. He has also written some SharePoint and Dynamics CRM
code before.

Recently a lot of his work has been integration projects with third-party products. These all used SOAP APIs and John
used the Visual Studio Wizards to generate the proxies and then called the external APIs.

How can les than a dozen
personas represent the
user base?
Traditional techniques, asking a broad
cross-section of the user base generates a
lot of noise, and a lot less signal.

PERSONAS IMPROVE THE SIGNAL TO
NOISE RATIO

It created designs that try to be
everything to everyone. Trying to please
everyone yet pleasing no one.

If you react to users you become a service
company not a product company

Your product begins to mutate from one
release to another, not follow a vision

Personas cut through this to represent
the user base with archetypical types
focused around the goals of a similar
users

Finding Personas

You are looking to build a cast of characters

How Many Personas?

Build a cast of characters

Every cast has at least
one primary persona

The primary persona is
the person who must be
satisfied.

Each primary persona
implies a separate
interface

Goals

Personas are defined by their goals; goals are defined by
personas

Developers, by training, tend to approach design by asking:
“What are the tasks?”

We want them to ask: “What are the goals?”

Only some task sequences will satisfy the user’s goals

Personal, Corporate, Practical

Personal Goals

Not feel stupid; Not make mistakes; Get an adequate
amount of work done; Have fun (or at least not be too
bored)

Corporate Goals

Increase Revenue; Protect Revenue; Reduce Costs

Practical Goals

Avoid meetings; Handle the client's demands; Record the
client's order; Create a numerical model of the business

Scenarios

A scenario is a concise description of a
persona trying to achieve a goal

DOCUMENTATION DRIVEN DESIGN
Pretotyping for your API

Quality measured by WTFs/minute

Write Code

Write Documentation

Re-write Code

Why does this work?

Programmers suffer from (and succeed because
of):

 Laziness, ineptitude, hubris

Programmers are task-focused

 Culture of breaking problems down, solve parts

This results in functional, but not useable, code

Write Documentation First

Pretotyping [pree-tuh-tahy-ping],
verb: Testing the initial appeal and
actual usage of a potential new
product by simulating its core
experience with the smallest
possible investment of time and
money.

Less formally, pretotyping is a way
to test a product idea quickly and
inexpensively by creating
extremely simplified versions of
that product to help validate the
premise that "If we build it, they
will use it.”

www.pretotyping.org

Write the documentation
for the API you want to
build

Produce real
documentation and ask for
feedback

Find about what we should
build, not how we will
build it

Don’t’ document code,
code to documentation

The Stairway to Heaven

1. Pull feature from
backlog

2. What goals do
personas have?

3. Break out
scenarios.

4. Write initial piece
of documentation

5. Review

6. Repeat

MEASURING API QUALITY
Using Cognitive Dimensions

The Cognitive Dimensions

1. Abstraction level.
2. Learning style.
3. Working framework.
4. Work-step unit.
5. Progressive evaluation..
6. Premature commitment.
7. Penetrability.
8. API elaboration.
9. API viscosity.
10. Consistency.
11. Role expressiveness.
12. Domain correspondence.

Role Expressiveness

Domain Correspondence

Consistency

Learning Style

Working Framework

Personas and Cognitive Dimensions

USABILITY TESTING

Preparing for a Study

• Decide when
– Enough of the API needs to be done

– But you don’t want to be so late you can’t change

• Design the task list for the study
– Think about the scenarios

– Consider the personas – what assumptions will
you prove?

• Work on the wording of the tasks in the lab
– Guide them on what, avoid telling how

Running a Study
You don’t need an expensive lab

Record the interaction to share. You
can do this by recording what the user
does, using

 Camcorder

 Software (Camtasia, Hypercam)

Set up the tools on the machine. Use a
VM to control and replicate
environment. Remove orthogonal
issues

Make the participant comfortable and
put them at ease before you begin.
Help them practice ‘working out loud’

Try to avoid guiding

Listen and take notes

Who do you test?

• Testing one user better than none

• Testing one user early better than 50 after

• Don’t worry about being representative

Dealing with the feedback

• Triage

– Ignore ‘Kayak’ problems

– Resist the temptation to ‘add’ something

– ‘New feature’ requests may be preferences

– Don’t thrown the baby out with the bath water

• Prioritize

Q&A

• @ICooper on Twitter

• ian@huddle.net

• http://codebetter.com/iancooper/

mailto:ian@huddle.net
http://codebetter.com/iancooper/
http://codebetter.com/iancooper/

