
Improving Search
Through Efficient A/B Testing:

A Case Study

Nokia Maps “Place Discovery” Team, Berlin:

Hannes Kruppa, Steffen Bickel, Mark Waldaukat,
Felix Weigel, Ross Turner, Peter Siemen

Nokia Maps for Everyone!

Nokia Maps Team, Berlin

Nokia Maps: Nearby Places
“Discover Places You Will Love, Anywhere”

Nokia Maps: Nearby Places
“Discover Places You Will Love, Anywhere”

Easily discover places
nearby with a tap
wherever you are. View
them in the map or in a
list view.

Nokia Maps: Nearby Places
“Discover Places You Will Love, Anywhere”

Easily discover places
nearby with a tap
wherever you are. View
them in the map or in a
list view.

Tap on a list item to
see detail
information.

Nokia Maps: Nearby Places
“Discover Places You Will Love, Anywhere”

Easily discover places
nearby with a tap
wherever you are. View
them in the map or in a
list view.

Possible user actions:
•  SaveAsFavorite
•  CallThePlace
•  DriveTo
•  …

Tap on a list item to
see detail
information.

Problem: Which Places to Show?
•  Restaurants? Hotels? Shopping? …

•  rank by Ratings?

•  Distance?

•  Usage?

•  Trending?

•  ….

Approach: A/B-Test Different Versions!

Here is classical
Web A/B testing:

A/B-Test forNearby Places

Version A:
Best of Eat’n’Drink

Version B:
Best of Hotels

Versions Compete for
User engagement:

= Number of Actions
performed on places.

There Is A Better Approach For Ranked Lists

[Joachims et al 2008]:
“How Does Clickthrough Data Reflect Retrieval Quality?”
•  Classical A/B testing converges slowly for ranked lists
•  Classical A/B testing often doesn’t reflect actual relevance

•  A/B Tests for Ranked Result Lists: Rank- Interleaving
•  Use Rank-Interleaving for faster statistical significance

Efficient A/B Testing: Rank Interleaving

Version A:
Best of Eat’n’Drink

Version B:
Best of Hotels

Efficient A/B Testing: Rank Interleaving

Version A:
Best of Eat’n’Drink

Version B:
Best of Hotels

Rank Interleaving:
Version A + B

+ =

•  Interleaved list is filled with pairs of results, one item from each version.
Coin toss decides who comes first.

Randomized Mixing of Result Lists

Version A
1.  alpha
2.  beta
3.  gamma
4.  delta
5.  epsilon

Version B
1.  beta
2.  kappa
3.  tau

Interleaved Result list

 <empty>

•  Interleaved list is filled with pairs of results, one item from each version.
Coin toss decides who comes first.

A/B Interleaving: Randomized Mixing of Lists

Version A
1.  alpha
2.  beta
3.  gamma
4.  delta
5.  epsilon

Version B
1.  beta
2.  Result f
3.  Result g

Interleaved Result list

1.  alpha (from A)
2.  beta (from B)

•  Interleaved list is filled with pairs of results, one item from each version.
Coin toss decides who comes first.

A/B Interleaving: Randomized Mixing of Lists

Version A
1.  alpha
2.  (beta)
3.  gamma
4.  delta
5.  epsilon

Version B
1.  beta
2.  kappa
3.  tau

Interleaved Result list

1.  alpha (from A)
2.  beta (from B)

Duplicates below current
item are removed

•  Interleaved list is filled with pairs of results, one item from each version.
Coin toss decides who comes first.

A/B Interleaving: Randomized Mixing of Lists

Version A
1.  alpha
2.  (beta)
3.  gamma
4.  delta
5.  epsilon

Version B
1.  beta
2.  kappa
3.  tau

Interleaved Result list

1.  alpha (from A)
2.  beta (from B)

3.  gamma (from A)
4.  kappa (from B)

•  Interleaved list is filled with pairs of results, one item from each version.
Coin toss decides who comes first.

A/B Interleaving: Randomized Mixing of Lists

Version A
1.  alpha
2.  (beta)
3.  gamma
4.  delta
5.  epsilon

Version B
1.  beta
2.  kappa
3.  tau

Interleaved Result list

1.  alpha (from A)
2.  beta (from B)

3.  gamma (from A)
4.  kappa (from B)

5.  tau (from B)
6.  delta (from A)

•  Interleaved list is filled with pairs of results, one item from each version.
Coin toss decides who comes first.

A/B Interleaving: Randomized Mixing of Lists

Version A
1.  alpha
2.  (beta)
3.  gamma
4.  delta
5.  epsilon

Version B
1.  beta
2.  kappa
3.  tau

Interleaved Result list

1.  alpha (from A)
2.  beta (from B)

3.  gamma (from A)
4.  kappa (from B)

5.  tau (from B)
6.  delta (from A)

7.  epsilon (from A, extra)

Leftover results are
appended but clicks

are not counted

•  Interleaved list is filled with pairs of results, one item from each version.
Coin toss decides who comes first.

A/B Interleaving: Randomized Mixing of Lists

Version A
1.  alpha
2.  (beta)
3.  gamma
4.  delta
5.  epsilon

Version B
1.  beta
2.  kappa
3.  tau

Interleaved Result list

1.  alpha (from A)
2.  beta (from B)

3.  gamma (from A)
4.  kappa (from B)

5.  tau (from B)
6.  delta (from A)

7.  epsilon (from A, extra)

Final list shown to user

•  Statistical Significance Test

•  Input (after hadoop-based log-processing...)
•  Number of clicks on version A
•  Number of clicks on version B

•  G-Test:
•  improved version of Pearson's Chi-squared test.
•  G > 6.635 corresponds to 99% confidence level

•  Null hypothesis:
•  Frequency of counts is equally distributed over both versions.

•  Test statistic:

Declaring A Winner

G = 2 [counts i] ln [counts i]
[total counts/2]
!

"
#

$

%
&

i'{A,B}
(

Managing Multiple Versions

Place Address

QA / Indexing
Cluster

Core
Type 4

Core
Type 1

replication

Data Frontend
(REST API)

Core
Type 2

Federation/Ranking

Discovery

Spelling

Search API Servlet Container

RP
C

In
te

ra
ct

io
n

Ar
ea

Core

Type 2
Core

Type 1
Core

Type 3

...

Users

Data
providers

Batch
updates for

 recovery
SOLR

instance-2
SOLR

instance-1

Zookeeper

Managing Multiple Versions

Place Address

QA / Indexing
Cluster

Core
Type 4

Core
Type 1

replication

Data Frontend
(REST API)

Core
Type 2

Federation/Ranking

Discovery

Spelling

Search API Servlet Container

RP
C

In
te

ra
ct

io
n

Ar
ea

Core

Type 2
Core

Type 1
Core

Type 3

...

Users

Data
providers

Batch
updates for

 recovery
SOLR

instance-2
SOLR

instance-1

Zookeeper
•  Every incoming query is replicated and routed to

Versions A and B
•  Each Version is implemented as a specific type of

SOLR query
•  We deploy more than 2 versions to production and

switch between them using zookeeper
•  Result-mixing of A and B is implemented in a

processing layer above SOLR

•  don’t confuse users with changing results, i.e.: provide a consistent user
experience

•  Solution:
•  Random generator is seeded with USER-ID for each query.
•  Each user gets his personal random generator.

Caveat 1: Randomization

•  we are relying on the integrity of transmitted user actions

•  sensitive to log contamination (unidentified QA, spam)

•  user-clicks plot:

Caveat 2: Healthy Click Data

•  Coverage = non-empty responses (in percent)

•  For example
•  A/B interleaving of eat&drink vs. eat&drink + going out
•  difference is not significant
•  But coverage different, percentage of responses with POIs nearby:

•  60% eat&drink
•  62% eat&drink + going out

•  Higher coverage decides in case there is no statistical difference

Caveat 3: A/B Clicks vs. Coverage

Case Study: Eat’n’Drink versus Hotels:
Not the User Behaviour we had expected!

Rate

Save (Fav’s)

Contact: Call

Contact: URL

Share

Navigate: Drive

Navigate: Walk

Navigage: Add

Info Provider

0 375 750 1125 1500

Case Study: versus :
Not the User Behaviour we had expected!

Rate

Save (Fav’s)

Contact: Call

Contact: URL

Share

Navigate: Drive

Navigate: Walk

Navigage: Add

Info Provider

0 375 750 1125 1500

Some users select their driving
destination with the help of
Nearby Places. Hotels are a
common destination in the car
navigation use case.

Summary
•  use A/B Rank Interleaving to optimize result relevance

•  Rank Interleaving is easy to implement. Works.

•  in a distributed search architecture manage your A/B test
configurations conveniently using Zookeeper

•  harness your hadoop/search analytics stack for A/B test evaluations

•  don’t make assumptions about your users!

•  [Joachims et al 2008]:

“How Does Clickthrough Data Reflect Retrieval Quality?”

Thanks!

Get in touch: hannes.kruppa@nokia.com

Nokia Maps “Place Discovery” Team, Berlin:

Hannes Kruppa, Steffen Bickel, Mark Waldaukat,
Felix Weigel, Ross Turner, Peter Siemen

