

Think? Compute! See!!

End User Programming for Thinkers

- Thinkers
 - . Personas
 - · Computational & Data Environments
- End User Programming
 - . Models
- Limitations especially for HPC
 Example Collaborative Analytics
- Virtual Execution Environment
- EUP Facilities
- Demo (time permitting)

Thinker Persona (Computational Scientists)

- Domain Experts in Science, Engineering, Business, Arts for whom high performance computation is now an essential tool discovery and design.
- Model based exploratory programming with a strong emphasis on hypothesis formulation and visualization.
- Minimal training in CS/SE and associated languages, tools and practices. Reject software industry Agile + OO
- Willing to use any combination of tools to get their work done. Eg, FORTRAN, C++ library codes, Python, R, Matlab ...
- . Data Scientists = Big Data + HPC (cloud/clusters/grids)

Thinker Compute Alternatives

- 1. Large Distributed Network of Small Machines
 - . (2G 2 4 cores) * 100s cpus and/or gpus
 - simple disks with GFS + Map Reduce ...
- 2. Small Clusters of Large Machines
 - (128G 1TB + 4 many cores) * 10s of cpus/gpus
 - · high performance RAID with hardware compression

2006-2011 Bedar

- · column stores
- . SQL + functions

Thinker Data Environment

- . Data Volumes in 10s of TB to 100 PBs
 - Memory, SSD and RAID Disk Array Based Column Stores, Distributed Data Sets and Databases
 - · Software and Hardware data compression; encryption
 - · Streams/Samples for huge data sets
- . Examples
 - Main Memory DB; NoSQL DB (Triple Stores); Column Stores, Vector DB; Streaming DB; GraphDB...
 - MemCache, Oracle Coherence: RIAK, Mongo, Couch DB, Amazon Simple DB; Aster, Greenplum, Veritica, Neo4J

Unique Data Properties & Operations

- Time (Millenniums to Nanoseconds) and Timespans
- Missing Data , Out of Range Data, Uncertainty (45 % likely, highly unlikely)
- Operations over Huge Tables, Dictionaries, Lists, Arrays
- Visualization of Big Data
- Charts and Plots; Trees and Graphs ;Maps in 2 &3 D, GIS, Human Body, Heat Maps...
- Examples InfoViz, Graphviz, R ggplot, Tableau...Processing (Processing.org, Processing.js)

Data Intensive Computing

Massive storage and processing enables living in a click/tic stream processing of raw un-normalized data - RFIDs, Clicks, Tics, Customer interactions, Sensor Events ...

- Smart Algorithms which stream over data sets - Customer Life Time Value, Recommendation Engines, Web Analytics, Real-time Financials, Network and Sensor Monitoring, Complex Event Processing

All roads lead to some form of Functional CRUD

6-2011 Beda

Applied Functional Programming (aka Super CRUD) -SQL + Functions + Streams – e.g. Greenplum ... NoSQL Databases – Dictionaries on Steroids (Big Table, CouchDB...) Map Reduce, Comprehensions Hybrid JVM, CLR/LINQ functional languages F#, Scala, Clojure Vector Functional Programming -Graph Databases -GPUs ...

End User Programming Models

- . Textual or Visual(boxes and arrows) DSL
- · Programming by Example (Abstract and Concrete)
- · Programming By Demonstration
- . Tables (Spreadsheets, Decision tables, State Tables)
- · Forms and CRUD/SQL
- · Rule/Deductive Programming
- · Mathematical Programming
- Examples Numpy, R, MatLab; LabView, Prograph, Google App Inventor, Yahoo Pipes; QBE,OBE;SBA; Tinker, Stage Cast, MSQuery; State Charts; 4GL - CoolGen, Mapper, Power House, PowerBuilder, Delphi, OutSystems, SQL; Expert Systems, Jrules; Agent Sheets, Datalog, Mathematical, R ...

EUP Experiences - Been There, Done That

- · Very productive for specific applications
- . Scaling problematic forcing often users to migrate to a "real" programming language

 - Limited Interoperability with outside world 32 bit (limited data size) and single process (limited concurrency) Restricted programming model (limited data types and operations e.g. SQL, OLAP, Spreadsheets)

Is EUP only for Wimps? hence HPC only for Wizards?!

End User Programming for Thinkers

Electoria Pr

Democratize High Performance Domain Oriented Programming

- . Counter the believe that EUP can't be used for hard problems
- . Need safe productive high level languages which deliver performance

•

. Thinker Environment Programming Two Level Model

Big Data EUP Examples

Apache Cascading, Pig, Hive

Ripe for R Google Sawzall

06-2011 Beda

Collaborative Analytics – A Thinker Example

- Analytic team consisting of cross jurisdictional domain experts assembled on demand for a critical situation
- . Analysts need to be able work across big data in clouds to embedded sensors
- . Analysts must be able to work visually as well as texturally to rapidly explore alternatives
- · Fine grained version management, security controlled sharing and annotation of all assets (cells, images,...) Workflow versioning for big data computations (enables redo)

What Virtual Execution Environment (VEE)?

Top Down VEE Design Choices

- 1. A few elegant and simple abstractions
- 2. A dynamic object model and garbage collector
- 3. Everything is an object (list , set)...
- !! the first N < 5 implementations will suck in space and time
- . !! interop with native HW will trail HW
- !! implementers will spend decades trying to make elegant => fast
- 4. Language is extended by libraries in the same language
- !! the libraries will be bloated and of variable quality, with changing APIs ...

Bedarra Research Labs

©2006-2011 Bedarra Resea

1. Needs to be fast !	Hence needs to be close to the metal in	
2. Needs to be small (compact)	terms of runtime types and data structures	
3. Needs basic safety	Hence must pay for nulls, index range checking	
4. Needs to support massive data	Hence needs to be value versus	
5. Needs scalable concurrency	reference based and needs to support data parallel and actor concurrency	
 It will be a challenge to design a normal developer language (i.e. the GPU problem) 	Hence needs an expert language and DSLs for normal users	
Ve	ctor Functional VEE	

Why Functional Vector VMs Kick Object VMs						
	Array VMs vs. OVMs					
	. No need for boxing and unboxing! Simpler GC					
	. Support for all native machine types					
	· Virtual machine is smaller can easily be held in instruction and data caches					
	· Values are shared until modified					
•	 Arrays are Column Stores =>Table is a set of columns 					
	Reduces the impedance between Objects and Records					
	Vectors are trivially serialized					
	Vectors are machine values					
	· Vector operations stream data through caches					
•	Array libraries use efficient algorithms code at machine level					
	Arrays take less space than object collections					
	Data parallelism is easily implemented					

©2006-2011 Bedarra Rese

©2006-2011 Bedarra Reso

APL – The first array language ₹8 ţ ŵ R ĩ Ŷ ő α **∇** G Caps Lo A ĸ Ē $\hat{\mathbf{U}}$ z NX ĉ v M 6 B Ń Think in Collections (Arrays in APL, later any) J, NIAL, K.. No Stinking Loops, Ultra Concise Programs Operator (later function composition) I want this on my mobile and iPad!

CARE Analysi a		
 50+:1 of ratio of analys Experts surface new full 	sts to expert developer unctionality to analysts	s as DSL library extensior
Analysts Application Pro Wide Spectrum DSLs (So Narrow Domain Specific I Leverage existing standar	gramming Model QL, Sheets & Tables, Bo DSL (IP packets, finance, rds and user models	xes and Arrows,) geographic, cultural)
Interoperable with R, Mat	tLab, MS Office	
		New Functionality
Expert Programming Mo	odel	
Wide Spectrum Functiona Full Interoperable with cu	I Vector Language rrent technologies: ODB	C, Java, C#, C++, Web
CARE Core Platform ,column store, core, Core Librarie . Virtual Execution Environment (\	is, platform interop VEE) – High Performance Vecto	r Functional Runtime

		Applytic	Tools (AT)				
Big Data Spreadsheet	Reporting	Dynamic Query	ACH)	Concept Mapping	Custom DSLs		
R & MatLab Interop	Decision Tables	Dynamic Visualization	Visual Query	Visual Programming	State Tables		
Collaborative Interactive Development Environment (IDE)							
Text Editor	Version Management	Visual Inspectors	Fine Grain Versioning	DSL Tooling			
Table Editor	Personal Workspaces	Pluggable Visuals	Workflow Versioning	Provisioning			
Data Inspectors	Helper Functions	Refactoring	Visual Editor	Granular Security			
		Library and Runtim	e Environment (VEE)				
High Performance	Uniform File I/O	Native Types	Dempster Schafer	Embedded CARE	Actors		
Column Store	ODBC, JDBC, XML	Collection Types	Streaming	Distributed CARE	SURF		
Functional SQL	Web, JSON, REST	Parallel Data Ops	Protocol Buffer, XMPP		Policy Security Engine		
Compression	C/C++ Callout/in	Pattern Matching					
TCP/IP, UNIX, IPC	Table Programming	Data Flow Constraints					
	Virtual Execution	n Environment (VEE) – Hij	gh Performance Vector F	unctional Runtime			
		Ų –					
Databases	Streaming Ecode	Data Simulatory	Ontoloniar	Konsiedas Barer	Onen Inter		

