
Dave Farley

Martin Thompson

GOTO Århus 2011

LMAX Disruptor:
100K TPS at less than 1ms latency

• Spin-off from Betfair the world’s
largest sports betting exchange

• Massive throughput and customer
numbers

LMAX History

• LMAX has the fastest order
execution for retail trading

• Institutional market makers
providing committed liquidity

• Real-time risk management of
retail customers

How not to solve this problem

J2EE

Actor

SEDA
X

Rails

X

X
X

RDBMS X

X X X

Tips for high performance computing

1. Show good “Mechanical Sympathy”

2. Keep the working set In-Memory

3. Write cache friendly code

4. Write clean compact code

5. Invest in modelling your domain

6. Take the right approach to concurrency

1. Mechanical Sympathy

Is it really “Turtles all the way down”?

What is under all these layers of abstraction?

"The most amazing achievement of the computer
software industry is its continuing cancellation of the
steady and staggering gains made by the computer
hardware industry.“

- Henry Peteroski

2. Keep the working set In-Memory

Does it feel awkward working with data remote from your address space?

• Keep data and behaviour co-located

• Affords rich interaction at low-latency

• Enabled by 64-bit addressing

3. Write cache friendly code

C2 C3 C1 C4

L1 L1 L1 L1

L2 L2 L2 L2

L3

C2 C3 C1 C4

L1 L1 L1 L1

L2 L2 L2 L2

MC

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Registers <1ns

~4 cycles ~1ns

~12 cycles ~3ns

MC

L3 ~45 cycles ~15ns

QPI ~20ns

~65ns

4. Write clean compact code

"Any intelligent fool can make things bigger, more complex, and more violent. It takes

a touch of genius -- and a lot of courage -- to move in the opposite direction."

• Hotspot likes small compact methods

• CPU pipelines stall if they cannot predict
branches

• If your code is complex you probably do not
sufficiently understand the problem domain

• “Nothing in the world is truly complex other
than Tax Law”

5. Invest in modelling your domain

• Single responsibility – One class one thing, one method one thing, etc.

• Know your data structures and cardinality of relationships

• Let the relationships do the work

Elephant

Wall

Snake Rope

TreeTrunk

Supported By

attached attached

like a

Model of an elephant based on blind men touching one part each

6. Take the right approach to concurrency

Concurrent programming is about 2 things:

Mutual Exclusion: Protect access to contended resources

Visibility of Changes: Make the results public in the correct order

• Context switch to the kernel

• Can always make progress

• Difficult to get right

• Atomic read-modify-write primitives

• Happen in user space

• Very difficult to get right!

Atomic/CAS Instructions Locks

What is possible when you get this stuff right?

On a single thread you have ~3 billion instructions per second to play with:

10K+ TPS

• If you don’t do anything too stupid

100K+ TPS

• With well organised clean code and standard libraries

1m+ TPS

• With custom cache friendly collections

• Good performance tests

• Controlled garbage creation

• Very well modelled domain

• BTW writing good performance tests is often harder than the target code!!!

How to address the other non-functional concerns?

• With a very fast business logic thread we need to feed it reliably

Business Logic

Receiver

Network

Un-Marshaller

Replicator

HA / DR Nodes

Pipelined

Process

Each stage can

have multiple

threads

Journaller File System Marshaller

Publisher

Network / Archive DB

Concurrent access to Queues – The Issues

Tail
Node Node Node Node Head

Link List backed

Array backed

size

• Hard to limit size

• O(n) access times if not head or tail

• Generates garbage which can be significant

• Cannot resize easily

• Difficult to get *P *C correct

• O(1) access times for any slot and cache friendly

Cache line

Head Tail size

J
o

u
rn

a
ll
e
r

R
e

p
li

c
a

to
r

U
n

-M
a
rs

h
a
ll
e
r

Disruptor in Action

Invoke Stage

Business Logic

M
a
rs

h
a

ll
e
r

Event

:sequence

:buffer

:invoker

Event

:sequence

:object

:buffer

Network

Receiver

103
1

2

3
4 5

6

7
n

97
1

2

3
4 5

6

7
n

long waitFor(n)

101 :MIN 101 102

long waitFor(n)

97 :MIN

Publisher

Network / Archive DB

Disruptor – Concurrent Programming Framework

Open Source project: http://code.google.com/p/disruptor/

• Very active with ever increasing performance and functionality

• Wide applicability

> Exchanges/Auctions, Risk Models, Network Probes, Market Data Processing, etc.

How do we take advantage of multi-core?

• Pin threads to cores for specific steps in a workflow or process

• Pass messages/events between cores with “Mechanical Sympathy”

• Understand that a “cache miss” is the biggest cost in HPC

• Measure! Don’t believe everything you read and hear

> Let’s bring back science in computer science!

The Disruptor Pattern

Ring Buffer

<Events>

S
e
q

u
e
n

c
e
 B

a
rr

ie
r

Sequencer

S
e
q

u
e
n

c
e
 B

a
rr

ie
r

Publishers EventProcessors EventProcessors

CPU Core per thread

Wrap UP

http://code.google.com/p/disruptor/

http://www.davefarley.net/

http://mechanical-sympathy.blogspot.com/

jobs@lmax.com

