
1!

HTML5 WEBSOCKETS

Brad Drysdale

Director of Technlogy

KAAZING!

2!

Kaazing. Connect. Everything.

WebSockets
The Web Communication Revolution

Brad Drysdale
Director of Technology - Kaazing

3!

Next Generation Web-based…

Single Trader Desktop

4!

Next Generation Web-based…

Single Trader Desktop

5!

Next Generation Web-based…

Single Trader Desktop

Real-time Gambling

6!

Next Generation Web-based…

Single Trader Desktop

Real-time Gambling Social Networking

Smart Metering

On-line Gaming
IPTV

Monitoring/Dashboards eComm

7!

Reaching the Masses…

W W W

8!

Going big…

Extending your business
across the Web means $$$

9!

Yet you say…

“I can already do this today”

10!

Hang on…

Can you really?

11!

Is your proposed solution…

•  Low Latency, Real-time Data ?
•  Bandwidth Efficient ?
•  Open Standards ?
•  Require Plugins ? (Note: IE10)
•  Platform Neutral ?
•  Seamless support for Mobile/Tablet OS ?
•  Cloud Ready ?
•  Future Proofed ?
•  Web Scale ?

12!

Is your proposed solution…

•  Low Latency, Real-time Data ?
•  Bandwidth Efficient ?
•  Open Standards ?
•  Require Plugins ? (Note: IE10)
•  Platform Neutral ?
•  Seamless support for Mobile/Tablet OS ?
•  Cloud Ready ?
•  Future Proofed ?
•  Web Scale ?
•  Truly Web Competitive ???

13!

Here we go…

So what’s new…

14!

Here we go…

Here’s how you get
Web Competitive

15!

Welcome HTML5

•  HTML5 is the next set of W3C HTML
standards

•  Offers new and enhanced features as
building blocks for next generation RIAs

•  Industry standard backed by Google,
Apple, Mozilla, Microsoft, Cisco, etc

•  Many of the browser vendors have already
implemented several of these features

•  The race is on to implement the rest and be
the best

16!

HTML5 Features

•  HTML5 features:
•  New forms and media (audio/video) elements
•  New APIs

•  Canvas
•  Web Workers
•  Geolocation
•  Offline storage
•  WebSockets
•  Communication APIs

•  Lots of other cool stuff which is content for a
different talk

17!

Once upon a time…

Let’s revisit the
good old days…

18!

Client-Server Architecture

19!

Client-Server Architecture

Full duplex transmission of rich business
protocols between server to client

20!

Client-Server Architecture

Full duplex transmission of rich business
protocols between server to client

Now let’s extend this to the Web!

21!

Out spending again…

Middleware.

22!

Out spending again…

23!

What is this stuff?

Middleware.

24!

Hint is in the name…

Middleware.

25!

HTTP Web Architecture

26!

HTTP Web Architecture

Middleware is the glue between HTTP and
TCP

27!

HTTP Is Not Full Duplex

28!

Half-Duplex Web Architecture

29!

The Legacy Web Stack

•  Designed to serve static documents
•  HTTP
•  Half duplex communication

•  High latency
•  Bandwidth intensive

•  HTTP header traffic approx. 800 to 2000
bytes overhead per request/response

•  Complex architecture
•  Not changed since the 90’s
•  Plug-ins
•  Polling / long polling
•  Legacy application servers

•  Expensive to “Webscale” applications
Half duplex Full duplex

30!

HTTP Shows It’s Age

Squeeze every
last drop…

31!

Hack the Web for Real-Time

•  Ajax applications use various “hacks” to
simulate real-time communication
•  Polling - HTTP requests at regular intervals

and immediately receives a response
•  Long Polling - HTTP request is kept open by

the server for a set period
•  Streaming - More efficient, but not complex to

implement and unreliable
•  Excessive HTTP header traffic, significant

overhead to each request response

32!

Hack the Web for Real-Time

Polling Long-Polling

Streaming Request Response
Overhead

Google Instant search single
key press = 649 Bytes

Yahoo single character
search = 1432 Bytes

33!

GET /PollingStock//PollingStock HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:
1.9.1.5) Gecko/20091102 Firefox/3.5.5
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/
*;q=0.8
Accept-Language: en-us
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://localhost:8080/PollingStock/
Cookie: showInheritedConstant=false;
showInheritedProtectedConstant=false; showInheritedProperty=false;
showInheritedProtectedProperty=false; showInheritedMethod=false;
showInheritedProtectedMethod=false; showInheritedEvent=false;
showInheritedStyle=false; showInheritedEffect=false;

HTTP Request Headers

Client

34!

HTTP Response Headers

•  Total (unnecessary) HTTP request and
response header information overhead:
871 bytes (example)

•  Overhead can be as much as 2000 bytes

HTTP/1.x 200 OK
X-Powered-By: Servlet/2.5
Server: Sun Java System Application Server 9.1_02
Content-Type: text/html;charset=UTF-8
Content-Length: 321
Date: Sat, 07 Nov 2009 00:32:46 GMT

Server

35!

HTTP Header Traffic Analysis

•  Example network throughput for HTTP request
and response headers associated with polling
•  Use case A: 1,000 clients polling every second:

•  Network throughput is (871 x 1,000) = 871,000 bytes =
6,968,000 bits per second (~6.6 Mbps)

•  Use case B: 10,000 clients polling every second:
•  Network throughput is (871 x 10,000) = 8,710,000 bytes =

69,680,000 bits per second (~66 Mbps)

•  Use case C: 100,000 clients polling every second:
•  Network throughput is (871 x 100,000) = 87,100,000 bytes =

696,800,000 bits per second (~665 Mbps)

36!

About Ajax and Comet

•  Great toilet cleaners…
•  Ajax (Asynchronous JavaScript and XML)

is used to build highly interactive Web
apps
•  Content can change without loading the entire

page
•  User-perceived low latency

•  "Real-time" often achieved through
polling and long-polling

•  Comet lack of a standard implementation
•  Comet adds lots of complexity

37!

•  Traditional Computing
•  Full-duplex bidirectional TCP sockets
•  Access any server on the network

•  Web Computing
•  Half-duplex HTTP request-response
•  HTTP polling, long polling fraught with

problems
•  Lots of latency, lots of bandwidth, lots of

server-side resources
•  Bespoke solutions became very complex over

time

Traditional vs Web

38!

Complexity does not scale

39!

The Web gets a new Superhero

40!

Enter HTML5 WebSocket!

41!

HTML5 WebSocket

•  WebSockets provide an improved Web Comms
fabric

•  Consists of W3C API and IETF Protocol
•  Provides a full-duplex, single socket over the

Web (even using ports 80 and 443)
•  Traverses firewalls, proxies, and routers

seamlessly
•  Leverages Cross-Origin Resource Sharing
•  Share port with existing HTTP content
•  Can be secured with TLS (much like HTTPS)

42!

The New Web Architecture

43!

The New Web Architecture

Regain the full duplex transmission of rich
business protocols between server to client

44!

The New Web Architecture

Regain the full duplex transmission of rich
business protocols between server to client,

across the Web, across the Cloud

45!

//Checking for browser support
if (window.WebSocket) {
 document.getElementById("support").innerHTML =
 "HTML5 WebSocket is supported";
 } else {
 document.getElementById("support").innerHTML =
 "HTML5 WebSocket is not supported";
 }

JavaScript

Checking For Browser Support

46!

Current Browser Support

•  Chrome
•  Safari
•  Firefox (need to turn on)
•  Opera 10.7 (need to turn on)
•  Internet Explorer 9+ Beta

Browser Support for WebSocket

47!

WebSocket Emulation

•  Kaazing WebSocket Gateway
•  http://www.kaazing.com/download
•  Makes WebSocket work in all browsers today

(including I.E. 6)

•  Flash WebSocket implementation
•  http://github.com/gimite/web-socket-js
•  Requires opening port on the server's firewall

Copyright © 2011 - Kaazing Corporation. All rights reserved.

48!

//Create new WebSocket
var mySocket = new WebSocket("ws://
www.WebSocket.org");

// Associate listeners
mySocket.onopen = function(evt) {

 alert("Connection open…");
};

mySocket.onmessage = function(evt) {

 alert("Received message: " + evt.data);
};

mySocket.onclose = function(evt) {

 alert("Connection closed…");
};

JavaScript

How do I use: WebSocket API

49!

// Sending data
mySocket.send("WebSocket Rocks!");

// Close WebSocket
mySocket.close();

JavaScript

Using the WebSocket API

50!

WebSocket Handshake

51!

WebSocket Frames

•  Frames have a few header bytes
•  Data may be text or binary
•  Frames from client to server are masked

(XORed w/ random value) to avoid confusing
proxies

52!

Reduction in Network Traffic

•  With WebSocket, each frame has only several
bytes of packaging (a 500:1 or even 1000:1
reduction)

•  No latency involved in establishing new TCP
connections for each HTTP message

•  Dramatic reduction in unnecessary network
traffic and latency

•  Remember the Polling HTTP header traffic?
665 Mbps network throughput for just headers

53!

HTTP Header Traffic Analysis

* 871,000 bytes = 6,968,000 bits = ~6.6 Mbps

Client Overhead Bytes Overhead Mbps

1,000 871,000 ~6,6*

10,000 8,710,000 ~66

100,000 87,100,000 ~665

54!

WebSocket Framing Analysis

* 2,000 bytes = 16,000 bits (~0.015 Mbps)

Client Overhead Bytes Overhead Mbps

1,000 2,000 ~0.015*

10,000 20,000 ~0.153

100,000 200,000 ~1.526

55!

HTTP versus WebSockets

WebSockets reduces bandwidth overhead up to 1000x

 HTTP traffic* WebSocket Traffic*

Google 788 bytes, plus 1 byte 2 bytes, plus 1 byte

Yahoo 1737 bytes, plus 1 byte 2 bytes, plus 1 byte

* Header information for each character entered into search bar

Example: Entering a character in a search field with auto suggestion

56!

Polling vs. Web Sockets

57!

Overheard…

 “Reducing kilobytes of data to 2 bytes…and
reducing latency from 150ms to 50ms is far
more than marginal. In fact, these two factors
alone are enough to make WebSocket
seriously interesting to Google.”
—Ian Hickson (Google, HTML5 spec lead)

58!

Verbatim

 “The world is moving to HTML5”
—Apple

 “The Web has not seen this level of
transformation, this level of acceleration,
in the past ten years… we're betting big on
HTML5”
—Vic Gundotra, VP of Engineering, Google

 “In a nutshell, we love HTML5, we love it so much we want
it to actually work.
—Dean Hachamovitch, General Manager for Internet Explorer,

Microsoft
“I had no idea there was so much HTML5 already in play”
—Tim O’Reilly

Copyright © 2010 - Kaazing Corporation. All rights reserved.

59!

The New Web Stack

•  Designed for full-duplex high
performance transactional Web
•  HTTP & HTML5 WebSocket
•  Full duplex communication

•  Lower latency
•  Reduced bandwidth
•  Simplified architecture
•  Massive scalability

Half duplex Full duplex

60!

WebSockets Architecture

61!

Current Browser Support

•  Chrome
•  Safari
•  Firefox (need to turn on)
•  Opera 10.7 (need to turn on)
•  Internet Explorer 9+ Beta

Browser Support for WebSocket

62!

Server Support

•  Kaazing WebSocket Gateway
•  Apache mod_pywebsocket
•  Jetty
•  phpwebsockets
•  web-socket-ruby
•  Yaws (Erlang)
•  Node.js / Socket.io

•  This slide is forever out of date…

63!

Got WebSocket !

Now what ?

64!

Discovering WebSockets

65!

Got WebSocket. Now What?

•  Major upgrade for web traffic, use it!
•  Build high performance, scalable messaging for

web apps
•  Extend the reach of *any* TCP-based protocol

you want, all the web to the browser
•  The browser is a true client of that protocol –

powerful paradigm shift
•  Aggregate data and apply business logic at the

client

66!

Example: Financial Apps

67!

Example: Financial Apps

68!

WebSocket-Based Quake II

http://code.google.com/p/quake2-gwt-port

69!

Example: HTML5 Frogger

http://demo.kaazing.com/frogger

70!

Possibilities…

•  Low latency Financial and Trading apps
•  Online in-game betting and live auctions
•  Social networking
•  Performance and monitoring dashboards
•  RFID and GPS Tracking
•  Sports and news broadcasting applications
•  Supply chain and inventory management
•  Smart meters
•  Next generation web application of your

choice!

71!

Your cool [HTML5 WebSocket] App
Here...

http://iseeaday.blogspot.com/

72!

Unconstrained Web
•  Financial Services
•  Transportation and Logistics
•  Telecommunications
•  Utilities
•  Social Networking

72

3G & 4G Mobile Networking
•  Significant bandwidth reduction
•  New Service Delivery
•  New Customer Experience

Cloud Computing
•  Server to Server communication
•  Distributed Internet applications

over any TCP protocol
•  Services on demand

73!

74!

