Ot()

conference
aarhus

IT’S ALL ANUMBERS GAME

THE DIRTY LITTLE SECRET OF SCALABLE SYSTEMS

Martin Thomson
@mjpt777
http://mechanical-sympathy.blogspot.com/

INTERNATIONAL
SOFTWARE DEVELOPMENT

CONFERENCE = _-:;_ x S






\ _—
R . oL
" 3 { |
| - . |
- ==
=\ ~ IS*I’ <F< Vilk*:‘f\?
“ Sy s | , A -
A | EE
aa g i E
A 5, - = Tr ¢
) 2
'l

|




e
x
<
3
b
-
-
-
[=]

1AMS

i) n
= |




What does it mean to be Scalable?

Total Cost Bad?
4 ' OK?

Good?

» \/olume



It’s all about cost per Transaction

Transaction Cost = Total Costs / Transaction Volume

Fixed Costs

> Upfront effort and infrastructure
> Need to amortize
> Capital vs. Operational spend

> How well do you know demand?

* Variable Costs

> Can they be on demand?
> Bulk discounts

> Guaranteeing available resources




How Many TPS Does An Additional Node Provide?




“Just throw hardware at the problem?”




Guidelines for scalable systems

Domain Model at the Core
Performance Test & Profile
Understand Algorithm Behaviour
Eliminate Contention

Manage the Queues

Separate Reading and Writing

Know Your Platform/Infrastructure

© N o 0 bk W D F

Be Commercial



1. Domain Model at the Core

* Pure model without any infrastructure
« Aggregates for clear entry points

« Minimal public interface EE I N
« Clean simple code!

- Layer around the core

Foreword by Martin Fowler

“Hexagonal Architecture”
- Alistair Cockburn



2. Performance Test & Profile

« Component Performance Tests

- System Performance Tests

* Production Monitoring

« Common performance test mistakes
« Theory of Constraints

« Drives the economics of a development

“Premature optimization is the rooft of all evil”
— Donald Knuth / Tony Hoare

> This is very different from knowing your capabilities,
so test and profile early and often...




3. Understand Algorithm Behaviour

« Test cases with a set of size of 1
— Really!

* Need to model realistic scenarios

 Model based on production

« Cache Oblivious Algorithms

« Unbounded queries are very bad

> Deal in manageable chunks

Time

O(log n)

Data Input (Space)



4. Eliminate Contention

Contention needs managed

> Management overhead often greater than
actual work — e.g. locks

Micro, Macro — all the same

> Lessons from the Disruptor
> Services and Databases

> ‘“Load Balancers”

Employ the “Single Writer Principle”

Shared Nothing Architectures

Design to allow sharding for writes



5. Manage the Queues

Little’s Law

Queues are everywhere!

> Make them explicit
> Keep them bounded

> Apply back pressure

Queues manage contention but
are also a source of contention

Monitor queue lengths

The Curse of Logging Libraries

Gateway Service

Thread Pool

—Ollll—eYeYe
—O—llll-Cle)e;

Transaction Service

Thread Pool

@ imd OO OM
—O—lin-—-jelele

wa3isis-qns Q|

X

Customers

Storage



6. Separate Reading and Writing

- One of the best ways to relieve contention

> Normally reads greatly outnumber writes

« Event Sourcing and CQRS

« Append Only Persistence
> Even for traditional RDBMSs

« Caching
> Reference Data

> Fact based Data

> Perfect = Right




7. Know Your Platform/Infrastructure

- Mechanical Sympathy

> What are the platform capabilities?
> Operations Per Second
> Bandwidth

> Latency

« Load test until breaking point

> Do systems degrade gracefully?
> Do systems crash?
> Order of an algorithm?

> Failure and Replicas

|
e
i
L
B = = I
e
B == = N
B == ==
B == - = IR



8. Be Commercial

« Understand the Business

>

>

It is way more fun and rewarding

Build a business using your great software

* Never say, “No”

>

“Yes, and here are the consequences...”

- Build relationships

>

>

>

Go for a coffee with others in the business
Eat together

Great Teams can be formed without formal
structure

Have fun!




Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777


http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/

