
IT’S ALL A NUMBERS GAME

THE DIRTY LITTLE SECRET OF SCALABLE SYSTEMS

Martin Thomson

@mjpt777

http://mechanical-sympathy.blogspot.com/

What does it mean to be Scalable?

Total Cost

Volume

OK?
Bad?

Good?

It’s all about cost per Transaction

Transaction Cost = Total Costs / Transaction Volume

• Fixed Costs

> Upfront effort and infrastructure

> Need to amortize

> Capital vs. Operational spend

> How well do you know demand?

• Variable Costs

> Can they be on demand?

> Bulk discounts

> Guaranteeing available resources

How Many TPS Does An Additional Node Provide?

“Just throw hardware at the problem”

Guidelines for scalable systems

1. Domain Model at the Core

2. Performance Test & Profile

3. Understand Algorithm Behaviour

4. Eliminate Contention

5. Manage the Queues

6. Separate Reading and Writing

7. Know Your Platform/Infrastructure

8. Be Commercial

1. Domain Model at the Core

• Pure model without any infrastructure

• Aggregates for clear entry points

• Minimal public interface

• Clean simple code!

• Layer around the core

“Hexagonal Architecture”

- Alistair Cockburn

2. Performance Test & Profile

• Component Performance Tests

• System Performance Tests

• Production Monitoring

• Common performance test mistakes

• Theory of Constraints

• Drives the economics of a development

“Premature optimization is the root of all evil”
 – Donald Knuth / Tony Hoare

> This is very different from knowing your capabilities,
so test and profile early and often…

3. Understand Algorithm Behaviour

• Test cases with a set of size of 1
– Really!

• Need to model realistic scenarios

• Model based on production

• Cache Oblivious Algorithms

• Unbounded queries are very bad

> Deal in manageable chunks

4. Eliminate Contention

• Contention needs managed

> Management overhead often greater than
actual work – e.g. locks

• Micro, Macro – all the same

> Lessons from the Disruptor

> Services and Databases

> “Load Balancers”

• Employ the “Single Writer Principle”

• Shared Nothing Architectures

• Design to allow sharding for writes

5. Manage the Queues

• Little’s Law

• Queues are everywhere!

> Make them explicit

> Keep them bounded

> Apply back pressure

• Queues manage contention but
are also a source of contention

• Monitor queue lengths

• The Curse of Logging Libraries

6. Separate Reading and Writing

• One of the best ways to relieve contention

> Normally reads greatly outnumber writes

• Event Sourcing and CQRS

• Append Only Persistence

> Even for traditional RDBMSs

• Caching

> Reference Data

> Fact based Data

> Perfect != Right

7. Know Your Platform/Infrastructure

• Mechanical Sympathy

> What are the platform capabilities?

> Operations Per Second

> Bandwidth

> Latency

• Load test until breaking point

> Do systems degrade gracefully?

> Do systems crash?

> Order of an algorithm?

> Failure and Replicas

8. Be Commercial

• Understand the Business

> It is way more fun and rewarding

> Build a business using your great software

• Never say, “No”

> “Yes, and here are the consequences…”

• Build relationships

> Go for a coffee with others in the business

> Eat together

> Great Teams can be formed without formal
structure

> Have fun!

Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777

http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/

