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•  Historical review 
•  Cases 
•  Future - and when is it for you ? 

Plan 
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•  The Alexandra Institute is one of Denmark’s nine GTS 
Institutes 
–  Approved by the Danish Ministry of Science, Technology and 

Innovation 
–  Independent and not-for-profit companies 
–  The core of technological infrastructure in Denmark 
–  Develop technological services based on latest research 
–  Sell state-of-the-art technological services to private enterprises 

and public authorities 
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Research Consult 
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•  Cutting-edge knowledge and competencies 
•  Research strategy, and active in research 

•  Software development 
•  Teaching and training 
•  Partner in research projects 
•  Independent partner in choice of technology, method etc. 
•  Idea-generating 
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3D Photorealistic Visualization Materials Fast 
calculation GPGPU Big Data Medical 
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CAVI 
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•  Creative freedom 

Software rasterization 

Outcast, 1999 Comanche, 1992 
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•  S3 Virge (1995) 

Hardware accelerated graphics 
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Battlefield 1942 

Ridge Racer 

Quake 2 
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•  GeForce 256 ”The worlds first GPU” (1999) 
–  Integrated T&L 
–  Texture/Environment Mapping 

The GPU 
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•  NV_Vertex_program (Geforce3) - 2000 
•  NV_Fragment_program (GeForce FX) - 2001 

•  In 2002 
–  ARB_Fragment_program 
–  ARB_Vertex_program 

First programmable cards 
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Vertices Rasterization Fragments 
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!!ARBvp1.0 

TEMP R0, R1;  

DP3   R0, program.local[32], vertex.normal; 

MUL   result.color.primary.xyz, R0, program.local[35]; 

MAX   R0, program.local[64].x, R0; 

MUL   R0, R0, vertex.normal; 

MUL   R0, R0, program.local[64].z; 

ADD   R1, vertex.position, -R0; 

DP4   result.position.x, state.matrix.mvp.row[3], R1; 

DP4   result.position.y, state.matrix.mvp.row[1], R1; 

DP4   result.position.z, state.matrix.mvp.row[2], R1;  

DP4   result.position.w, state.matrix.mvp.row[3], R1; 

ARB Vertex program 1.0 
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•  GeForce FX, 2002 

nVidia Dawn demo 
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•  nVidia Cg, 2002 
•  Microsoft HLSL, 2002 
•  OpenGL GLSL, 2004 

High level shader languages 
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#version 140 
  
uniform Transformation { 
    mat4 projection_matrix; 
    mat4 modelview_matrix; 
}; 
  
in vec3 vertex; 
  
void main() { 
    gl_Position = projection_matrix * modelview_matrix * vec4(vertex, 1.0); 
} 

 

GLSL example 
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From http://www.khronos.org/developers/library/overview/opengl_overview.pdf 
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•  Lego Digital Designer 
•  Subsurface scattering 
•  Molecular visualization 

Examples of programmable graphics 
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•  5.922 Taj Mahal 
•  3.803 Death Star 
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Without SSDO (3.0) 
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With SSDO (4.0) 
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SSDO 
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•  Crytek’s realtime Global Illumination 

Kaplanyan, A. and Dachsbacher, Cascaded light propagation 
volumes for real-time indirect illumination. In Proceedings of 
the 2010 ACM SIGGRAPH Symposium on interactive 3D 
Graphics and Games 

June 23, 2009 Page 29 



Click to edit Master title style Realtime Subsurface scattering 

SSLPV: subsurface light propagation volumes. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG '11) 
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•  Physically-Based Visual Simulation on Graphics 
Hardware. Mark J. Harris, Greg Coombe, Thorsten 
Scheuermann, and Anselmo Lastra. Proc. 2002 
SIGGRAPH / Eurographics Workshop on Graphics 
Hardware 2002 

Ignoring early work in the Ikonas (1978), the Pixel Machine (1989) and Pixel Planes 5 (1992)  

25 x 

speedup!!! 
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•  ... a PhD on surgical simulators for procedures on children 
with malformed hearts 
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•  3D grid à 2D texture 
–  Flat 3d-texture 

•  Per vertex texture coordinates for neighbors 

Mapping to 2D render-target  
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•  That is, some fragments are not valid particles 
–  Exclude calculations with a depth-test based cull as 

well as fragment based conditional kill 

Approximation of arbitrary shapes 
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•  Graphics API is about graphics 
•  Limitied memory model by textures 
•  Limited shader capabilities 
•  Lack of integer and bit operations 
•  Communication limit between pixels 
•  No scatter operation 

I don’t like graphics  
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•  Early academic work 
–  BrookGPU (2004) 

•  CTM (ati) - 2006 
•  Cuda (nvidia) - 2007 
•  OpenCL - 2008 

Away with the graphics 
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•  Compute Unified Device Architecture 
–  Compute oriented language 
–  Extension of C 
–  A kernel is executed as a number of threads in parallel 

•  Lightweight 
•  1000s of threads for full efficiency 
•  SIMD (mostly) 

•  Heterogenous computing 
–  Host and device 

CUDA 
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•  Much the same as CUDA 
 

OpenCL, Khronos group 

CUDA term OpenCL term 
GPU Device 
Multiprocessor Compute Unit 
Scalar core Processing element 
Global memory Global memory 
Shared (per-block) 
memory Local memory 

Local memory 
(automatic, or local) Private memory 

kernel program 
block work-group 
thread work item 
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•  LEGO, 3D services 

•  Luxion, spatial acceleration structures 

•  BrainReader, Optical flow registration 

GPGPU work at the Alexandra Institute 
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Acceleration and validation of optical flow based deformable registration for image-guided radiotherapy. K.Ø. Noe, B.D. de Senneville, U.V. 
Elstrøm, K. Tanderup, T.S. Sørensen. Acta Oncologica 2008; 47(7):1286-1293. 

•  Horn & Schunck optical flow estimation 

POPI 4D Thorax registration 

48 x 

speedup!!! 
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•  3D grid of displacement vectors 
–  From one dataset to another 

•  Find optimum of the following; 

Optical flow registration 
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•  Euler-Lagrange 
–  Integral to differential equation 

•  Finite difference 
–  discretized 
–  à iterative local update scheme 

•  Multiresolution 
–  Global solution 
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•  Registration of the hipocampus 
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•  Fast raytracing 

Photorealistic interactive images 
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•  Professor Henrik Wann Jensen 
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•  E.g. Bounding Volume Hierarchy 

•  GPS location, GIS systems, BIM systems 
•  ... And ray tracing (through ray-triangle query) 

Spatial Data Structures 
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•  Rebuild many times, queries many times 
–  Could refit or do partial rebuilds 

•  We focus on FAST and COMPLETE rebuild 
–  Based on a series of papers at ”High Performance Graphics” 

2010-2012 

Dynamic spatial objects 
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•  HLBVH: Hierarchical LBVH Construction for Real Time 
Ray Tracing of Dynamic Geometry (2010) 

HLBVH 
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0 1 2 3 4 5 6 7 8 9 
0 0 0 0 1 1 1 1 1 1 
0 1 1 1 0 0 1 1 1 1 
1 0 1 1 1 1 0 0 1 1 
... ... ... ... ... ... ... ... ... ... 
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•  From paper to working was difficult 
–  Array pointing to array of arrays pointing to the head of an 

index of another heads index to an array in a segmentes 
part of the treelet 

–  No debugger (at the time) 
–  No source code from author 
–  Segmentation fault à full reboot 

Devil is in the detail 

“You really implemented Jacopo's paper? That's really 
cool. [snip] When I was asked to implement Jacopo's 
paper I failed (or was lazy) and that's why I developed 
HLBVH2 which was simpler. That's why a new paper 
appeared.” Kirill Garanzha 
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•  The size of each treelet varied based on the subdivisions 
according to morton code 
–  How do you find the write position, and how do you know how 

much memory to allocate ? 

Prefixsum 

Segment 1 2 3 4 5 6 7 
Emit size 0 3 2 1 2 4 0 
prefixsum 0 3 5 6 8 12 12 
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•  Kirill Garanzha et. al. 2011. Simpler and faster HLBVH 
with work queues. In Proceedings of the ACM SIGGRAPH 
Symposium on High Performance Graphics 

•  5-10 times faster than HLBVH 1 



Click to edit Master title style Basic Ideas of HLBVH 2 

•  Task queue 
•  Each task is a node (of the finished tree) 
•  Each task is processed by one thread (in a warp) 



Click to edit Master title style Per warp prefix sum 

static __device__ int scanWarpPopc(int *start_write_offset, // shared memory for this warp 
   int active, // 0 if one or zero nodes are generated, 1 if two nodes are generated 
   int *output_counter) 
{ 
   uint active_mask = __ballot(active); // bitmask with 1 for each threads in current warp that 

will output two queue jobs 
   uint thread_write_offset = __popc(active_mask << (WARP_SIZE - threadIdx.x)) * scale; // sum of 

1-bits in the mask, before the thread itself  
   uint warp_write_offset = __popc(active_mask) * scale; // total number of threads in current 

warp that will output. 
  
   if(threadIdx.x == 0 && warp_write_offset > 0) 
   { 
      start_write_offset[threadIdx.y] = atomicAdd(output_counter, warp_write_offset);   // global 

warp offset 
   } 
  
   return start_write_offset[threadIdx.y] + thread_write_offset; // return the position where the 

current thread can write 
} 
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while(number_of_queue_elements > 0) 
   { 

      host_counter[0] = 0; 

      cudaMemset(device_counter, 0, sizeof(int)); 
  

      int number_of_threads_needed = number_of_queue_elements; 

      int number_of_blocks = ceil(number_of_threads_needed / ((float)WARP_SIZE) ); 
  

      dim3 grid(number_of_blocks,1,1); 

      dim3 block(WARP_SIZE,1,1); 
  

           mortonSplit_KERNEL<<<grid, block>>>(bit_level, 

            thrust::raw_pointer_cast(&dev_morton_codes[0]), 
            bottom_work_queues[qin].getQueue(), 

            bottom_work_queues[1-qin].getQueue(), 

            number_of_queue_elements, 
            thrust::raw_pointer_cast(&bvh_build_nodes[0]), 

            device_counter, 

            total_number_of_nodes, 
            max_number_of_prims_in_leaf); 

  

  
      cudaMemcpy(host_counter, device_counter, sizeof(int), cudaMemcpyDeviceToHost);    

      number_of_queue_elements = host_counter[0]; 

      total_number_of_nodes += host_counter[0]; 
      qin = 1 - qin; // swap the pointer 

      bit_level--;  

      number_of_bvh_levels++; 

      bvh_level_offsets[number_of_bvh_levels] = total_number_of_nodes; 
      level_counter++; 

   } 



Click to edit Master title style HLBVH 3 

•  Tero Karras. Maximizing Parallelism in the 
Construction of BVHs, Octrees, and k-d Trees. 
Proceedings of the EUROGRAPHICS Conference on 
High Performance Graphics 2012, Paris, France, June 
25-27, 2012 2012 
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•  A limiting factor is that the node hierarchy is generated in 
a sequential fashion 
–  In the first levels there might be very few elements, i.e. starving 

the highly parallel many core processor 
–  Sublinear scaling with cores 

•  So parallelize over all (internal) nodes of the tree 
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•  For n primitives there are n-1 internal nodes 

•  An internal node is the longest common prefix of the 
children 
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•  Each internal node is stored at an index corresponding to 
its start range (if right child) or end range (if left child) 
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// returns the length of the longest common prefix of the two input morton 

bitstrings 
__device__ int _deltaFunc(uint m1, uint m2)  
{ 
   uint tmp = m1 ^ m2; // xor 
  
   /*int len = 0; 
   // count the leading zero  
   for(int k = 31; k >= 0; k--) 
   { 
      uint mask = 1U; 
      mask <<= k; 
      if((tmp&mask) == 0)// (i & mask) == (j & mask)) 
      { 
         len++; 
      } 
      else 
      { 
         break; 
      } 
   } 
  
   return len;*/ 
   return __clz(tmp); 
} 
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inline int clz( uint bit_string ) 
{ 
   __asm 
   { 
      MOV EAX, bit_string; 
      BSR EAX, EAX; 
      SUB EAX, 31;  
      IMUL EAX, -1; 
   } 
   // Return with result in EAX 
} 
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CPU - Karras 
Asm 5.5 ms 
Loop 18.4 ms 
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•  Surface area heuristic taking into account the size and 
distribution of triangles to find split 

•  Right now experimenting with an iterative scheme to 
improve fast trees... Tree rotations 
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•  Optimizing for each platform 
–  i.e. taking a working intel OpenCL and compiling for nvidia GPU 

gave a bad performance 

•  Difficult to make an implementation that works on all 
platforms 
–  i.e. taking a working (optimized) nvidia OpenCL and compiling for 

intel gave wrong results (problem in barriers) 

•  We need standard algorithms for sort, prefixsum etc. 

OpenCL experience 



Click to edit Master title style Fast ray tracing 



Click to edit Master title style Editing environment 



Click to edit Master title style LEGO Universe 

•  February 2010 
•  Lego Universe was in Development 
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•  http://www.youtube.com/watch?v=rYAuzslBg0w 
•  http://www.youtube.com/watch?v=rI0Xr1nscH4 

June 23, 2009 Page 82 
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•  Rack-mounted Quadro Plex servers (17 in Miami) 
•  Model processing 

–  Geometri simplifikation (Optix) 
–  Per-vertex ambient occlusion (Optix) 

•  In game icons 
–   (OpenGL + CUDA) 

•  Images for moderation 
–  (OpenGL + CUDA) 

June 23, 2009 Page 83 



Click to edit Master title style Optix 

•  CUDA kernel - generate ray program (per triangle) 
–  Generate samples on hemisphere sampled on triangle 

•  CUDA kernel - Material program 
–  Write if occluded 

•  Max_unoccluded_for_keeping_face 
–  If exceeded keep vertex 

•  Ambient occlusion per vertex 
–  Sampler hemisphere af face-normal 

June 23, 2009 Page 84 
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538.000 vertices 444.924 vertices 
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•  6.3 million dds renderinger (icons) 
–  128x128 

•  11.9 million png (moderation) 
–  1024x1024 

•  12.6 million geo. optimizations 
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Hinnerup Net 
www.hinnerup.net 

LEGO model optimized and rendered 
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GHIC adapter driver 

OpenGL Extension for Affinity selection was 
unavailable on the G-HICx8 frontend card 

if (!wglEnumGpusNV || !wglCreateAffinityDCNV ||  
    !wglDeleteDCNV || !wglEnumGpuDevicesNV ||  
    !wglEnumGpusFromAffinityDCNV) 
{ 
    errorStrings.PushBack("Affinity not supported by graphics hardware"); 
    return false; 
} 
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Windows Service 

Remote Desktop 
(Hosting / 

Terremark) 

4 high-end GPUs 
OpenGL 1.1 

with 2 extensions 
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•  Multi-core / many-core is here to stay 

•  Porting of code 
•  Performance (and target) 
•  Maintenance 

Porting, performance and maintanability 
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•  Still good at graphics 
•  Still features that are not in Cuda/OpenCL 

•  Portable / standardised 
•  Compute capability 

–  Direct Compute (Direct X) 
–  Compute Shaders (OpenGL) 

•  Web 
–  WebGL (OpenGL for web) 
–  WebCL (OpenCL for web) 

Graphics API ? 
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•  CPU/GPU hybrid processors 
–  AMD        Fusion / Llano 
–  Intel    Larrabee / Sandybridge 
–  Nvidia   Kepler / Maxwell  



Click to edit Master title style 



Click to edit Master title style 
Jesper.mosegaard@alexandra.dk 
 
twitter.com/mosegaard 


