
Click to edit Master title style

MASSIVE ACCELERATION
THROUGH THE !

MANY-CORE PROCESSOR !
THAT YOU CALL A !
GRAPHICS CARD

Jesper Mosegaard

Head of Computer Graphics Lab
Alexandra Institute!

Click to edit Master title style

•  Historical review
•  Cases
•  Future - and when is it for you ?

Plan

Click to edit Master title style GTS - Advanced Technology Group

•  The Alexandra Institute is one of Denmark’s nine GTS
Institutes
–  Approved by the Danish Ministry of Science, Technology and

Innovation
–  Independent and not-for-profit companies
–  The core of technological infrastructure in Denmark
–  Develop technological services based on latest research
–  Sell state-of-the-art technological services to private enterprises

and public authorities

Click to edit Master title style Research based user driven innovation

Research Consult

Click to edit Master title style What do we do ?

•  Cutting-edge knowledge and competencies
•  Research strategy, and active in research

•  Software development
•  Teaching and training
•  Partner in research projects
•  Independent partner in choice of technology, method etc.
•  Idea-generating

Click to edit Master title style Computer Graphics Lab

Nikolaj Andersen
3D graphics Artist

Peter Trier Mikkelsen
Masters Computer Science

Karsten Noe
Ph.d. Computer Science

Jens Rimestad
Masters Computer Science

Brian Christensen
Ph.d. Computer Science

Jesper Mosegaard, head of research
Ph.d. Computer Science

Jesper Børlum
Masters in Civil Engineering

Thomas Kim Kjeldsen
Ph.d. In Physics

Lee Lassen
Masters in Computer Science

Click to edit Master title style An overview

3D Photorealistic Visualization Materials Fast
calculation GPGPU Big Data Medical

Click to edit Master title style Computer Graphics in many areas

Click to edit Master title style CG cooperation

10/2/12 Page 9

CAVI

Click to edit Master title style Historical Review

Click to edit Master title style

•  Creative freedom

Software rasterization

Outcast, 1999 Comanche, 1992

Click to edit Master title style

•  S3 Virge (1995)

Hardware accelerated graphics

Click to edit Master title style Fixed Function pipeline

Battlefield 1942

Ridge Racer

Quake 2

Click to edit Master title style

•  GeForce 256 ”The worlds first GPU” (1999)
–  Integrated T&L
–  Texture/Environment Mapping

The GPU

Click to edit Master title style

Click to edit Master title style

•  NV_Vertex_program (Geforce3) - 2000
•  NV_Fragment_program (GeForce FX) - 2001

•  In 2002
–  ARB_Fragment_program
–  ARB_Vertex_program

First programmable cards

Click to edit Master title style Programmable vertices and fragments

Vertices Rasterization Fragments

Click to edit Master title style

!!ARBvp1.0

TEMP R0, R1;

DP3 R0, program.local[32], vertex.normal;

MUL result.color.primary.xyz, R0, program.local[35];

MAX R0, program.local[64].x, R0;

MUL R0, R0, vertex.normal;

MUL R0, R0, program.local[64].z;

ADD R1, vertex.position, -R0;

DP4 result.position.x, state.matrix.mvp.row[3], R1;

DP4 result.position.y, state.matrix.mvp.row[1], R1;

DP4 result.position.z, state.matrix.mvp.row[2], R1;

DP4 result.position.w, state.matrix.mvp.row[3], R1;

ARB Vertex program 1.0

Click to edit Master title style

•  GeForce FX, 2002

nVidia Dawn demo

Click to edit Master title style

•  nVidia Cg, 2002
•  Microsoft HLSL, 2002
•  OpenGL GLSL, 2004

High level shader languages

Click to edit Master title style

#version 140

uniform Transformation {
 mat4 projection_matrix;
 mat4 modelview_matrix;
};

in vec3 vertex;

void main() {
 gl_Position = projection_matrix * modelview_matrix * vec4(vertex, 1.0);
}

GLSL example

Click to edit Master title style OpenGL 4.x pipeline

From http://www.khronos.org/developers/library/overview/opengl_overview.pdf

Click to edit Master title style

•  Lego Digital Designer
•  Subsurface scattering
•  Molecular visualization

Examples of programmable graphics

Click to edit Master title style Lego Digital Designer 3 à 4

Click to edit Master title style YES... Playing with LEGO at work

•  5.922 Taj Mahal
•  3.803 Death Star

Click to edit Master title style

June 23, 2009 Page 26

Without SSDO (3.0)

Click to edit Master title style

June 23, 2009 Page 27

With SSDO (4.0)

Click to edit Master title style

June 23, 2009 Page 28

SSDO

Click to edit Master title style Light Probagation Volumes

•  Crytek’s realtime Global Illumination

Kaplanyan, A. and Dachsbacher, Cascaded light propagation
volumes for real-time indirect illumination. In Proceedings of
the 2010 ACM SIGGRAPH Symposium on interactive 3D
Graphics and Games

June 23, 2009 Page 29

Click to edit Master title style Realtime Subsurface scattering

SSLPV: subsurface light propagation volumes. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG '11)

Click to edit Master title style Molecular visualization

Click to edit Master title style Multicore crisis

Click to edit Master title style Computing power of the GPU

Click to edit Master title style

Click to edit Master title style CMLLab

•  Physically-Based Visual Simulation on Graphics
Hardware. Mark J. Harris, Greg Coombe, Thorsten
Scheuermann, and Anselmo Lastra. Proc. 2002
SIGGRAPH / Eurographics Workshop on Graphics
Hardware 2002

Ignoring early work in the Ikonas (1978), the Pixel Machine (1989) and Pixel Planes 5 (1992)

25 x

speedup!!!

Click to edit Master title style My adventure in gpgpu land

•  ... a PhD on surgical simulators for procedures on children
with malformed hearts

Click to edit Master title style Physics systems

Click to edit Master title style

June 23, 2009 Page 38

Click to edit Master title style

•  3D grid à 2D texture
–  Flat 3d-texture

•  Per vertex texture coordinates for neighbors

Mapping to 2D render-target

h

w

d

s1

s1 s2

sd

…

… sd-1

h

w

Click to edit Master title style

•  That is, some fragments are not valid particles
–  Exclude calculations with a depth-test based cull as

well as fragment based conditional kill

Approximation of arbitrary shapes

Click to edit Master title style

•  Graphics API is about graphics
•  Limitied memory model by textures
•  Limited shader capabilities
•  Lack of integer and bit operations
•  Communication limit between pixels
•  No scatter operation

I don’t like graphics

Click to edit Master title style

•  Early academic work
–  BrookGPU (2004)

•  CTM (ati) - 2006
•  Cuda (nvidia) - 2007
•  OpenCL - 2008

Away with the graphics

Click to edit Master title style

•  Compute Unified Device Architecture
–  Compute oriented language
–  Extension of C
–  A kernel is executed as a number of threads in parallel

•  Lightweight
•  1000s of threads for full efficiency
•  SIMD (mostly)

•  Heterogenous computing
–  Host and device

CUDA

Click to edit Master title style Grids, blocks, threads
Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Click to edit Master title style CUDA memory space

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Click to edit Master title style

•  Much the same as CUDA

OpenCL, Khronos group

CUDA term OpenCL term
GPU Device
Multiprocessor Compute Unit
Scalar core Processing element
Global memory Global memory
Shared (per-block)
memory Local memory

Local memory
(automatic, or local) Private memory

kernel program
block work-group
thread work item

Click to edit Master title style

•  LEGO, 3D services

•  Luxion, spatial acceleration structures

•  BrainReader, Optical flow registration

GPGPU work at the Alexandra Institute

Click to edit Master title style

Acceleration and validation of optical flow based deformable registration for image-guided radiotherapy. K.Ø. Noe, B.D. de Senneville, U.V.
Elstrøm, K. Tanderup, T.S. Sørensen. Acta Oncologica 2008; 47(7):1286-1293.

•  Horn & Schunck optical flow estimation

POPI 4D Thorax registration

48 x

speedup!!!

Click to edit Master title style

•  3D grid of displacement vectors
–  From one dataset to another

•  Find optimum of the following;

Optical flow registration

Click to edit Master title style

•  Euler-Lagrange
–  Integral to differential equation

•  Finite difference
–  discretized
–  à iterative local update scheme

•  Multiresolution
–  Global solution

Click to edit Master title style BrainReader ApS

•  Registration of the hipocampus

Click to edit Master title style Photorealistic... ”Easy” enough

June 23, 2009 Page 52

Click to edit Master title style

•  Fast raytracing

Photorealistic interactive images

Click to edit Master title style Luxion: GPU/CPU raytacing

•  Professor Henrik Wann Jensen

Click to edit Master title style Keyshot

Click to edit Master title style

•  E.g. Bounding Volume Hierarchy

•  GPS location, GIS systems, BIM systems
•  ... And ray tracing (through ray-triangle query)

Spatial Data Structures

Click to edit Master title style

•  Rebuild many times, queries many times
–  Could refit or do partial rebuilds

•  We focus on FAST and COMPLETE rebuild
–  Based on a series of papers at ”High Performance Graphics”

2010-2012

Dynamic spatial objects

Click to edit Master title style

•  HLBVH: Hierarchical LBVH Construction for Real Time
Ray Tracing of Dynamic Geometry (2010)

HLBVH

Click to edit Master title style Computing Morton number

Click to edit Master title style From sorted prims to tree

0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 1 1 1 1 1
0 1 1 1 0 0 1 1 1 1
1 0 1 1 1 1 0 0 1 1
...

Click to edit Master title style

Click to edit Master title style

•  From paper to working was difficult
–  Array pointing to array of arrays pointing to the head of an

index of another heads index to an array in a segmentes
part of the treelet

–  No debugger (at the time)
–  No source code from author
–  Segmentation fault à full reboot

Devil is in the detail

“You really implemented Jacopo's paper? That's really
cool. [snip] When I was asked to implement Jacopo's
paper I failed (or was lazy) and that's why I developed
HLBVH2 which was simpler. That's why a new paper
appeared.” Kirill Garanzha

Click to edit Master title style Debug output til dot graph

Click to edit Master title style Prefixsum is pure magic

•  The size of each treelet varied based on the subdivisions
according to morton code
–  How do you find the write position, and how do you know how

much memory to allocate ?

Prefixsum

Segment 1 2 3 4 5 6 7
Emit size 0 3 2 1 2 4 0
prefixsum 0 3 5 6 8 12 12

Click to edit Master title style HLBVH 2

•  Kirill Garanzha et. al. 2011. Simpler and faster HLBVH
with work queues. In Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics

•  5-10 times faster than HLBVH 1

Click to edit Master title style Basic Ideas of HLBVH 2

•  Task queue
•  Each task is a node (of the finished tree)
•  Each task is processed by one thread (in a warp)

Click to edit Master title style Per warp prefix sum

static __device__ int scanWarpPopc(int *start_write_offset, // shared memory for this warp
 int active, // 0 if one or zero nodes are generated, 1 if two nodes are generated
 int *output_counter)
{
 uint active_mask = __ballot(active); // bitmask with 1 for each threads in current warp that

will output two queue jobs
 uint thread_write_offset = __popc(active_mask << (WARP_SIZE - threadIdx.x)) * scale; // sum of

1-bits in the mask, before the thread itself
 uint warp_write_offset = __popc(active_mask) * scale; // total number of threads in current

warp that will output.

 if(threadIdx.x == 0 && warp_write_offset > 0)
 {
 start_write_offset[threadIdx.y] = atomicAdd(output_counter, warp_write_offset); // global

warp offset
 }

 return start_write_offset[threadIdx.y] + thread_write_offset; // return the position where the

current thread can write
}

Click to edit Master title style Workqueue loop

while(number_of_queue_elements > 0)
 {

 host_counter[0] = 0;

 cudaMemset(device_counter, 0, sizeof(int));

 int number_of_threads_needed = number_of_queue_elements;

 int number_of_blocks = ceil(number_of_threads_needed / ((float)WARP_SIZE));

 dim3 grid(number_of_blocks,1,1);

 dim3 block(WARP_SIZE,1,1);

 mortonSplit_KERNEL<<<grid, block>>>(bit_level,

 thrust::raw_pointer_cast(&dev_morton_codes[0]),
 bottom_work_queues[qin].getQueue(),

 bottom_work_queues[1-qin].getQueue(),

 number_of_queue_elements,
 thrust::raw_pointer_cast(&bvh_build_nodes[0]),

 device_counter,

 total_number_of_nodes,
 max_number_of_prims_in_leaf);

 cudaMemcpy(host_counter, device_counter, sizeof(int), cudaMemcpyDeviceToHost);

 number_of_queue_elements = host_counter[0];

 total_number_of_nodes += host_counter[0];
 qin = 1 - qin; // swap the pointer

 bit_level--;

 number_of_bvh_levels++;

 bvh_level_offsets[number_of_bvh_levels] = total_number_of_nodes;
 level_counter++;

 }

Click to edit Master title style HLBVH 3

•  Tero Karras. Maximizing Parallelism in the
Construction of BVHs, Octrees, and k-d Trees.
Proceedings of the EUROGRAPHICS Conference on
High Performance Graphics 2012, Paris, France, June
25-27, 2012 2012

Click to edit Master title style Basic Idea of HLBVH 3

•  A limiting factor is that the node hierarchy is generated in
a sequential fashion
–  In the first levels there might be very few elements, i.e. starving

the highly parallel many core processor
–  Sublinear scaling with cores

•  So parallelize over all (internal) nodes of the tree

Click to edit Master title style Binary Radix tree

•  For n primitives there are n-1 internal nodes

•  An internal node is the longest common prefix of the
children

Click to edit Master title style

•  Each internal node is stored at an index corresponding to
its start range (if right child) or end range (if left child)

Click to edit Master title style Clz - GPU
// returns the length of the longest common prefix of the two input morton

bitstrings
__device__ int _deltaFunc(uint m1, uint m2)
{
 uint tmp = m1 ^ m2; // xor

 /*int len = 0;
 // count the leading zero
 for(int k = 31; k >= 0; k--)
 {
 uint mask = 1U;
 mask <<= k;
 if((tmp&mask) == 0)// (i & mask) == (j & mask))
 {
 len++;
 }
 else
 {
 break;
 }
 }

 return len;*/
 return __clz(tmp);
}

Click to edit Master title style Clz - CPU

inline int clz(uint bit_string)
{
 __asm
 {
 MOV EAX, bit_string;
 BSR EAX, EAX;
 SUB EAX, 31;
 IMUL EAX, -1;
 }
 // Return with result in EAX
}

Click to edit Master title style Build time

CPU - Karras
Asm 5.5 ms
Loop 18.4 ms

Click to edit Master title style SAH ?!

•  Surface area heuristic taking into account the size and
distribution of triangles to find split

•  Right now experimenting with an iterative scheme to
improve fast trees... Tree rotations

Click to edit Master title style

•  Optimizing for each platform
–  i.e. taking a working intel OpenCL and compiling for nvidia GPU

gave a bad performance

•  Difficult to make an implementation that works on all
platforms
–  i.e. taking a working (optimized) nvidia OpenCL and compiling for

intel gave wrong results (problem in barriers)

•  We need standard algorithms for sort, prefixsum etc.

OpenCL experience

Click to edit Master title style Fast ray tracing

Click to edit Master title style Editing environment

Click to edit Master title style LEGO Universe

•  February 2010
•  Lego Universe was in Development

Click to edit Master title style Lego Universe (Oct. 2010)

June 23, 2009 Page 81

Click to edit Master title style

•  http://www.youtube.com/watch?v=rYAuzslBg0w
•  http://www.youtube.com/watch?v=rI0Xr1nscH4

June 23, 2009 Page 82

Click to edit Master title style GPU Supercomputing med LEGO

•  Rack-mounted Quadro Plex servers (17 in Miami)
•  Model processing

–  Geometri simplifikation (Optix)
–  Per-vertex ambient occlusion (Optix)

•  In game icons
–  (OpenGL + CUDA)

•  Images for moderation
–  (OpenGL + CUDA)

June 23, 2009 Page 83

Click to edit Master title style Optix

•  CUDA kernel - generate ray program (per triangle)
–  Generate samples on hemisphere sampled on triangle

•  CUDA kernel - Material program
–  Write if occluded

•  Max_unoccluded_for_keeping_face
–  If exceeded keep vertex

•  Ambient occlusion per vertex
–  Sampler hemisphere af face-normal

June 23, 2009 Page 84

Click to edit Master title style Lego server geometry optimization

538.000 vertices 444.924 vertices

Click to edit Master title style Lego Universe, Moderation

Click to edit Master title style Numbers (okt. 2010 – apr. 2011)

•  6.3 million dds renderinger (icons)
–  128x128

•  11.9 million png (moderation)
–  1024x1024

•  12.6 million geo. optimizations

Click to edit Master title style

Hinnerup Net
www.hinnerup.net

LEGO model optimized and rendered

Click to edit Master title style Lego rendering

10/2/12 Page 89

Click to edit Master title style Affinity

GHIC adapter driver

OpenGL Extension for Affinity selection was
unavailable on the G-HICx8 frontend card

if (!wglEnumGpusNV || !wglCreateAffinityDCNV ||
 !wglDeleteDCNV || !wglEnumGpuDevicesNV ||
 !wglEnumGpusFromAffinityDCNV)
{
 errorStrings.PushBack("Affinity not supported by graphics hardware");
 return false;
}

Click to edit Master title style Virtual Adapter and Session-0 isolation

Windows Service

Remote Desktop
(Hosting /

Terremark)

4 high-end GPUs
OpenGL 1.1

with 2 extensions

Click to edit Master title style

•  Multi-core / many-core is here to stay

•  Porting of code
•  Performance (and target)
•  Maintenance

Porting, performance and maintanability

Click to edit Master title style

•  Still good at graphics
•  Still features that are not in Cuda/OpenCL

•  Portable / standardised
•  Compute capability

–  Direct Compute (Direct X)
–  Compute Shaders (OpenGL)

•  Web
–  WebGL (OpenGL for web)
–  WebCL (OpenCL for web)

Graphics API ?

Click to edit Master title style Heterogen processering

•  CPU/GPU hybrid processors
–  AMD Fusion / Llano
–  Intel Larrabee / Sandybridge
–  Nvidia Kepler / Maxwell

Click to edit Master title style

Click to edit Master title style
Jesper.mosegaard@alexandra.dk

twitter.com/mosegaard

